Multilayers of 1-octyl-3-methylimidazolium tetrafluoroborate [C8C1Im][BF4] have been deposited on a Cu(111) surface by evaporation in UHV. XPS shows that [C8C1Im][BF4] adsorbs without decomposition for substrate temperatures < 300 K. XPS and UPS data indicate that ionic liquid (IL) deposition onto a 120 K Cu(111) surface results in the IL forming multilayers by a simultaneous-multilayer growth process. IL deposition onto a room temperature Cu(111) surface results in a different arrangement where at a coverage of one monolayer the IL forms droplets of about 100 Å height covering only about 1/10th of the surface. Multilayers deposited at 120 K convert to the room temperature arrangement upon heating. Further heating above room temperature causes the IL multilayer droplets to desorb leaving an IL monolayer of ≈6 Å thickness at ≈430 K. At higher temperatures, this monolayer reacts with the surface and BF3 is emitted, leaving products containing C, N, and some F on the surface. We propose a surface reaction where [BF4](-) ions react to form chemisorbed fluorine (Cu-F) and gaseous BF3, with the remaining [C8C1Im](+) decomposing on the Cu(111) in an unidentified manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b02932 | DOI Listing |
ACS Nano
January 2025
Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic.
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.
The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.
View Article and Find Full Text PDFChem Sci
January 2025
Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
We investigated the reactivity of a -dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
In area-selective atomic layer deposition (AS-ALD), small molecule inhibitors (SMIs) play a critical role in directing surface selectivity, preventing unwanted deposition on non-growth surfaces, and enabling precise thin-film formation essential for semiconductor and advanced manufacturing processes. This study utilizes grand canonical Monte Carlo (GCMC) simulations to investigate the competitive adsorption characteristics of three SMIs─aniline, 3-hexyne, and propanethiol (PT)─alongside trimethylaluminum (TMA) precursors on a Cu(111) surface. Single-component adsorption analyses reveal that aniline attains the highest coverage among the SMIs, attributed to its strong interaction with the Cu surface; however, this coverage decreases by approximately 42% in the presence of TMA, underscoring its susceptibility to competitive adsorption effects.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation.
Since corrosion causes significant harm to the environment and economy, sustainable corrosion inhibitors are essential. This study set out to examine Anti-corrosion ability of a number of closely related polycyclic compounds of flavone derivatives, namely 5,7-dimethoxyflavone (1), 4',5,7-trimethoxyflavone (2), 3',4',5'-trimethoxyflavone (3), 5-hydroxy-3,3',4',7-tetramethoxyflavone (4), tangeretin (5), 3,3',4',5,6,7,8-heptamethoxyflavone (6), 3',5,7-trihydroxy-4',5',6-trimethoxyflavone (7) and 3',4',5,7-tetrahydroxy-3,6,8-trimethoxyflavone (8), using the DFT/B3LYP/6-311 + + G(d, p) basis set. Monte Carlo simulations were used to reveal the adsorption of the investigated compounds on the Cu(111) surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!