A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 μmol g(-1) cat (ϕMeOH 0.024 mol Einstein(-1)) that was much higher in comparison with the in situ synthesized TiO2, 828 μmol g(-1) cat (ϕMeOH 0.010 mol Einstein(-1)) and the homogeneous Ru(bpy)3Cl2 complex, 385 μmol g(-1) cat (ϕMeOH 0.005 mol Einstein(-1)).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr03712cDOI Listing

Publication Analysis

Top Keywords

hybrid nanocomposite
12
photoreduction co2
12
visible light
12
μmol g-1
12
g-1 cat
12
cat ϕmeoh
12
mol einstein-1
12
co2 methanol
8
methanol visible
8
situ synthesized
8

Similar Publications

The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.

View Article and Find Full Text PDF

This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.

View Article and Find Full Text PDF

One of the biggest challenges in food packaging is the creation of sustainable and eco-friendly packaging materials to shield foods from ultraviolet (UV) photochemical damage and to preserve the distinctive physical, chemical, and biological characteristics of foods throughout the supply chain. Accordingly, this study focuses on enhancing the UV shielding properties and biological activity of carboxylmethyl cellulose sodium (CMC) through modifications using zinc oxide (ZnO), copper oxide (CuO), and graphene oxide (GO) using the solution casting technique. The hybrid nanocomposites were characterized by fourier-transform infrared (FTIR) spectrophotometer, ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and x-ray diffraction (XRD).

View Article and Find Full Text PDF

The discharge of untreated dye waste from various industrial sectors into wastewater poses significant environmental and health risks. This study presents an innovative approach by developing a cost-effective and eco-friendly hybrid mesoporous nanocomposite, silver nanoparticles@mesoporous mango peel-derived carbon (AgNPs@MMC), synthesized from agricultural waste (mango peels) and urban waste (X-ray film waste). The core objectives of this work are: (i) recycling agricultural and urban waste to produce valuable materials; (ii) achieving effective removal of methyl violet 10B (MV10B) through simultaneous adsorption and photocatalytic degradation; and (iii) evaluating the antimicrobial properties of the developed material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!