Rimicaris exoculata is a deep-sea hydrothermal vent shrimp whose enlarged gill chamber houses a complex trophic epibiotic community. Its gut harbours an autochthonous and distinct microbial community. This species dominates hydrothermal ecosystem megafauna along the Mid-Atlantic Ridge, regardless of contrasting geochemical conditions prevailing in them. Here, the resident gut epibiont community at four contrasted hydrothermal vent sites (Rainbow, TAG, Logatchev and Ashadze) was analysed and compiled with previous data to evaluate the possible influence of site location, using 16S rRNA surveys and microscopic observations (transmission electron microscopy, scanning electron microscopy and fluorescence in situ hybridization analyses). Filamentous epibionts inserted between the epithelial cell microvilli were observed on all examined samples. Results confirmed resident gut community affiliation to Deferribacteres, Mollicutes, Epsilonproteobacteria and to a lesser extent Gammaproteobacteria lineages. Still a single Deferribacteres phylotype was retrieved at all sites. Four Mollicutes-related operational taxonomic units were distinguished, one being only identified on Rainbow specimens. The topology of ribotype median-joining networks illustrated a community diversification possibly following demographic expansions, suggesting a more ancient evolutionary history and/or a larger effective population size at Rainbow. Finally, the gill chamber community distribution was also analysed through ribotype networks based on sequences from R. exoculata collected at the Rainbow, Snake Pit, TAG, Logatchev and Ashadze sites. Results allow the refining of hypotheses on the epibiont role and transmission pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiv101 | DOI Listing |
Brain
December 2024
School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to () or () increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.
The holobiont concept has emerged as an attempt to recognize and describe the myriad interactions and physiological signatures inherent to a host organism, as impacted by the microbial communities that colonize and/or co-inhabit the environment within which the host resides. The field acknowledges and draws upon principles from evolution, ecology, genetics, and biology, and in many respects has been "pushed" by the advent of high throughput DNA sequencing and, to a lesser extent, other "omics"-based technologies. Despite the explosion in data generation and analyses, much of our current understanding of the human and ruminant "holobiont" is based on compositional forms of data and thereby, restricted to describing host phenotypes via associative or correlative studies.
View Article and Find Full Text PDFMicrobiome
December 2024
Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
Background: The search for alternatives to antibiotic growth promoters in poultry production has increased interest in probiotics. However, the complexity of the interactions between probiotics, gut microbiome, and the host hinders the development of effective probiotic interventions. This study explores metabolic modelling to examine the possibility of designing informed probiotic interventions within poultry production.
View Article and Find Full Text PDFCell
December 2024
Department of Immunology, University of Toronto, Toronto, ON, Canada. Electronic address:
The underlying mechanisms used by the intestinal microbiota to shape disease outcomes of the host are poorly understood. Here, we show that the gut commensal protozoan, Tritrichomonas musculis (T.mu), remotely shapes the lung immune landscape to facilitate perivascular shielding of the airways by eosinophils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!