RNASeqMetaDB: a database and web server for navigating metadata of publicly available mouse RNA-Seq datasets.

Bioinformatics

Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: December 2015

Unlabelled: Gene targeting is a protocol for introducing a mutation to a specific gene in an organism. Because of the importance of in vivo assessment of gene function and modeling of human diseases, this technique has been widely adopted to generate a large number of mutant mouse models. Due to the recent breakthroughs in high-throughput sequencing technologies, RNA-Seq experiments have been performed on many of these mouse models, leading to hundreds of publicly available datasets. To facilitate the reuse of these datasets, we collected the associated metadata and organized them in a database called RNASeqMetaDB. The metadata were manually curated to ensure annotation consistency. We developed a web server to allow easy database navigation and data querying. Users can search the database using multiple parameters like genes, diseases, tissue types, keywords and associated publications in order to find datasets that match their interests. Summary statistics of the metadata are also presented on the web server showing interesting global patterns of RNA-Seq studies.

Availability And Implementation: Freely available on the web at http://rnaseqmetadb.ece.tamu.edu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692969PMC
http://dx.doi.org/10.1093/bioinformatics/btv503DOI Listing

Publication Analysis

Top Keywords

web server
12
mouse models
8
rnaseqmetadb database
4
web
4
database web
4
server navigating
4
metadata
4
navigating metadata
4
metadata publicly
4
publicly mouse
4

Similar Publications

Despite the recent surge of viral metagenomic studies, it remains a significant challenge to recover complete virus genomes from metagenomic data. The majority of viral contigs generated from de novo assembly programs are highly fragmented, presenting significant challenges to downstream analysis and inference. To address this issue, we have developed Virseqimprover, a computational pipeline that can extend assembled contigs to complete or nearly complete genomes while maintaining extension quality.

View Article and Find Full Text PDF

MMFuncPhos: A Multi-Modal Learning Framework for Identifying Functional Phosphorylation Sites and Their Regulatory Types.

Adv Sci (Weinh)

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.

View Article and Find Full Text PDF

Sensors play an important role in both the continuous monitoring and intermittent analyses, which are essential for the study of wastewater treatment plant management and conducting related research. Given the significant environmental impact of the issues involved, accurate measurement of the volume of water flowing into and out of treatment plants is a key parameter for plant management, ecotoxicological studies and academic research programs. Traditionally, flow measurements have been based on calibrated weirs or venturi flumes, using water level measurements for conversion into flow, according to established relationships.

View Article and Find Full Text PDF

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

PbsNRs: predict the potential binders and scaffolds for nuclear receptors.

Brief Bioinform

November 2024

Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.

Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!