How novel genetic interactions evolve, under what selective pressures, and how they shape adaptive traits is often unknown. Here we uncover behavioural and developmental genetic mechanisms that enable water striders to survive attacks by bottom-striking predators. Long midlegs, critical for antipredator strategy, are shaped through a lineage-specific interaction between the Hox protein Ultrabithorax (Ubx) and a new target gene called gilt. The differences in leg morphologies are established through modulation of gilt differential expression between mid and hindlegs under Ubx control. Furthermore, short-legged water striders, generated through gilt RNAi knockdown, exhibit reduced performance in predation tests. Therefore, the evolution of the new Ubx-gilt interaction contributes to shaping the legs that enable water striders to dodge predator strikes. These data show how divergent selection, associated with novel prey-predator interactions, can favour the evolution of new genetic interactions and drive adaptive evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568302 | PMC |
http://dx.doi.org/10.1038/ncomms9153 | DOI Listing |
Insect Sci
January 2025
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.
View Article and Find Full Text PDFProc Biol Sci
December 2024
Laboratory of Integrative Animal Ecology, Department of New Biology, DGIST, Daegu, Republic of Korea.
Laws of physics shape adaptations to locomotion, and semiaquatic habitats of water striders provide opportunities to explore adaptations to locomotion on water surface. The hydrodynamics of typical propelling with symmetrical strokes of midlegs is well understood, but the subsequent passive sliding on surface has not been explored. We hypothesized that morphological and behavioural adaptations to sliding vary by body size.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Computer Science and Mathematics, University of Finance and Administration, Prague, Czech Republic.
In this paper, we introduce an improved water strider algorithm designed to solve the inverse form of the Burgers-Huxley equation, a nonlinear partial differential equation. Additionally, we propose a physics-informed neural network to address the same inverse problem. To demonstrate the effectiveness of the new algorithm and conduct a comparative analysis, we compare the results obtained using the improved water strider algorithm against those derived from the original water strider algorithm, a genetic algorithm, and a physics-informed neural network with three hidden layers.
View Article and Find Full Text PDFLangmuir
November 2024
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
Superhydrophobic materials have been widely applied in oil-water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!