The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555029PMC
http://dx.doi.org/10.1038/srep13621DOI Listing

Publication Analysis

Top Keywords

room temperature
16
remote control
8
electrical conductance
8
nano-electromechanical systems
8
magnetic field
8
long wire
8
wire axis
8
conductance
7
control magnetostriction-based
4
magnetostriction-based nanocontacts
4

Similar Publications

Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.

Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

Three types of commercial austenitic stainless steels, 1.4307 (AISI 304 L), 1.4404 (AISI 316 L) 1.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!