Phase Behavior of a Piperidinium-Based Room-Temperature Ionic Liquid Exhibiting Scanning Rate Dependence.

J Phys Chem B

Graduate School of Advanced Integration Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

Published: September 2015

The structural flexibility and conformational variety of the ions in room-temperature ionic liquids (RTILs) have significant effects on their physicochemical properties. To begin a systematic study of the thermodynamic properties of nonaromatic RTILs, 1-methyl-1-butylpiperidinium bis(fluorosulfonyl)amide ([Pip1,4][FSA]) was selected as the first sample. In addition to the rotational flexibility of the alkyl group, the [Pip1,4](+) cation has characteristic ring-flipping flexibility, which is very different from the behavior of the well-studied imidazolium-based cations. Calorimetry investigations using laboratory-made high-sensitivity calorimeters and Raman spectroscopy revealed that [Pip1,4][FSA] has two crystalline phases, Cryst-α and Cryst-β, and that every phase change is linked to conformational changes of both the cation and anion. Each phase change is also governed by very slow dynamics. The phase changes from supercooled liquid to Cryst-α and from Cryst-α to Cryst-β, which were observed only during heating, are not in fact phase transitions but structural relaxations. Notably, the temperatures of these structural relaxations exhibited heating rate dependences, from which the activation energy of the ring-flipping was estimated to be 38.8 kJ/mol. It is thought that this phenomenon is due to the associated conformational changes of the constituent ions in viscous surroundings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b07346DOI Listing

Publication Analysis

Top Keywords

room-temperature ionic
8
cryst-α cryst-β
8
phase change
8
conformational changes
8
structural relaxations
8
phase
5
phase behavior
4
behavior piperidinium-based
4
piperidinium-based room-temperature
4
ionic liquid
4

Similar Publications

An Atomistic Analysis of the Carpet Growth of KCl Across Step Edges on the Ag(111) Surface.

J Phys Chem Lett

January 2025

Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn 53115, Germany.

The carpet growth of alkali halide (AH) layers across step edges of substrates enables the growth of seamless and continuous large domains. Yet, information about how the AH layer adapts continuously to the height difference between the terraces on the two sides of a step is only described by continuum models, which do not give details of the ionic displacements. Here, we present a first study of thin epitaxial KCl(100) layers grown on the Ag(111) surface by scanning tunneling microscopy that provides atomistic details for the first time.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state polymer electrolytes (SPEs) are gaining attention for sodium metal batteries (SMBs) due to their flexibility and lower interfacial resistance, but they struggle with sodium ion conductivity and unstable interfaces.
  • A novel composite electrolyte called PPNM is created by integrating a 3D copper metal organic framework (Cu-MOF) with polyacrylonitrile (PAN) fibers and polyethylene oxide (PEO), enhancing ionic conductivity and sodium ion movement.
  • The improved stability and performance of the PPNM electrolyte lead to strong cycling results for Na3V2(PO4)3@C/PPNM/Na full cells, making it a promising strategy for advancing solid-state SMB technology.
View Article and Find Full Text PDF

Structure factor line shape model gives approximate nanoscale size of polar aggregates in pyrrolidinium-based ionic liquids.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.

Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, ().

View Article and Find Full Text PDF

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!