Translation in eukaryotes is followed to detect toxins and virulence factors and coupled to the induction of defence pathways. Caenorhabditis elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNA interference screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways upstream of MAP kinase to mediate the systemic communication of translation defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from the wild type can also rescue detoxification gene induction in lipid-biosynthesis-defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589496PMC
http://dx.doi.org/10.1038/ncb3229DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
elegans translation
8
mutations translation
8
induce detoxification
8
gene inactivations
8
lipid biosynthetic
8
detoxification gene
8
gene induction
8
detoxification
6
elegans
5

Similar Publications

With praziquantel being the sole available drug for schistosomiasis, identifying novel anthelmintic agents is imperative. A chemical investigation of the fruiting body of the bioluminescent mushroom Berk. resulted in the isolation of new conjugated long-chain fatty acids (8,10,12,13)-12,13-dihydroxy-7-oxo-octadeca-8,10-dienoic acid () and (7,8,9,11)-7,8-dihydroxy-13-oxo-octadeca-9,11-dienoic acid () and three previously described compounds, (7,8,9)-7,8-dihydroxyoctadec-9-enoic acid (), (2)-dec-2-ene-1,10-dioic acid (), and a ketolactone marasmeno-1,15-dione ().

View Article and Find Full Text PDF

Erratum to "Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis"[Biochem. Biophys. Res. Commun. (742),2025, 151156].

Biochem Biophys Res Commun

January 2025

Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. Electronic address:

View Article and Find Full Text PDF

Copper exposure induces neurotoxicity through ferroptosis in C. elegans.

Chem Biol Interact

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China. Electronic address:

Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity.

View Article and Find Full Text PDF

With the increasing incidence of non-hereditary Parkinson's disease (PD), research into the involvement of specific environmental factors, in addition to aging, has become more prominent. The effects of microplastic exposure on public health have gained increased attention as it is known to cause a range of neurotoxic changes, some of which are similar to the pathological features of PD. We carried out low-dose microplastic exposure experiments on mice and Caenorhabditis elegans models and implemented a survey regarding the utilization of plastic products in the population.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!