Introduction: The aim of the study was to explore an effective method to induce adipose-derived stem cells (ADSCs) to differentiate into Schwann-like cells in vitro.
Material And Methods: Reagents were applied in two different ways (Dezawa inducing method and modified inducing method) in which inducers including β-mercaptoethanol (β-ME), all-trans-retinoic acid (ATRA), type I collagenase, forskolin, heregulin, basic fibroblast growth factor (BFGF) and brain-derived neurotrophic factor (BDNF) were used in different ways to induce ADSCs of rats to differentiate into Schwann-like cells. After induction, the cell morphologic characteristics and the cellular immunohistochemical staining positive rate of anti-S100 and anti-GFAP (glial fibrillary acidic protein) antibodies and the gray value of immunocytochemical dye with anti-S100 and anti-GFAP antibodies and cell activity measured by the MTT method were compared with each other to evaluate the induction effects.
Results: Both methods can induce differentiation of ADSCs of rats into Schwann-like cells, but the cellular morphology of the modified method was more similar to Schwann cells than that of the Dezawa inducing method, there was a higher cellular immunohistochemical staining positive rate and staining grey value in immunocytochemical dye with anti-S100 and anti-GFAP antibodies, and less damage in the cell activity of the modified inducing method than that of the Dezawa inducing method.
Conclusions: The effect of the modified method to induce ADSCs to differentiate into Schwann-like cells in vitro is superior to that of the Dezawa inducing method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548042 | PMC |
http://dx.doi.org/10.5114/aoms.2015.53310 | DOI Listing |
World J Stem Cells
December 2024
Department of Orthopedics, Children's Hospital of Fudan University & National Children's Medical Center, Shanghai 201102, China.
Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".
Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.
Gastroenterology
December 2024
Department of Clinical Genetics, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. Electronic address:
Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2024
Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian 223800, China.
Background: Diabetic peripheral neuropathy (DPN) is considered one of the most common chronic complications of diabetes. Impairment of mitochondrial function is regarded as one of the causes. Iron-sulfur clusters are essential cofactors for numerous iron-sulfur (Fe-S)-containing proteins/enzymes, including mitochondrial electron transport chain complex I, II, and III and aconitase.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China. Electronic address:
This study investigates the efficacy of a novel tissue-engineered scaffold for nerve repair and functional reconstruction following injury. Utilizing stable jet electrospinning, we fabricated aligned ultrafine fibers from dopamine and poly(L-lactic acid) (PLLA), further developing a biomimetic, oriented, and electroactive scaffold comprising poly(pyrrole) (PPy), polydopamine (PDA), and PLLA through dual in situ polymerizations. The scaffold demonstrated enhanced cell adhesion and reactive oxygen species (ROS) scavenging capabilities and promoted the differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells, essential for nerve regeneration.
View Article and Find Full Text PDFSynapse
May 2024
Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China.
The differentiation of bone marrow stromal cells (BMSCs) into Schwann-like cells (SCLCs) has the potential to promote the structural and functional restoration of injured axons. However, the optimal induction protocol and its underlying mechanisms remain unclear. This study aimed to compare the effectiveness of different induction protocols in promoting the differentiation of rat BMSCs into SCLCs and to explore their potential mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!