Introduction: The angiotensin II type 1 receptor (AT1R) and the peroxisome proliferator-activated receptor γ (PPARγ) have been implicated in the pathogenesis of atherosclerosis. A number of studies have reported that AT1R inhibition or genetic AT1R disruption and PPARγ activation inhibit vascular inflammation and improve glucose and lipid metabolism, underscoring a molecular interaction of AT1R and PPARγ. We here analyzed the hypothesis that vasculoprotective anti-inflammatory and metabolic effects of AT1R inhibition are mediated by PPARγ.
Material And Methods: Female ApoE(-/-)/AT1R(-/-) mice were fedwith a high-fat and cholesterol-rich diet and received continuous treatment with the selective PPARγ antagonist GW9662 or vehicle at a rate of 700 ng/kg/min for 4 weeks using subcutaneously implanted osmotic mini-pumps. Additionally, one group of female ApoE(-/-) mice served as a control group. After treatment for 4 weeks mice were sacrificed and read-outs (plaque development, vascular inflammation and insulinsensitivity) were performed.
Results: Using AT1R deficient ApoE(-/-) mice (ApoE(-/-)/AT1R(-/-) mice) we found decreased cholesterol-induced endothelial dysfunction and atherogenesis compared to ApoE(-/-) mice. Inhibition of PPARγ by application of the specific PPARγ antagonist GW9662 significantly abolished the anti-atherogenic effects of AT1R deficiency in ApoE(-/-)/AT1R(-/-) mice (plaque area as % of control: ApoE(-/-): 39 ±5%; ApoE(-/-)/AT1R(-/-): 17 ±7%, p = 0.044 vs. ApoE(-/-); ApoE(-/-)/AT1R(-/-) + GW9662: 31 ±8%, p = 0.047 vs. ApoE(-/-)/AT1R(-/-)). Focusing on IL6 as a pro-inflammatory humoral marker we detected significantly increased IL-6 levels in GW9662-treated animals (IL-6 in pg/ml: ApoE(-/-): 230 ±16; ApoE(-/-)/AT1R(-/-): 117 ±20, p = 0.01 vs. ApoE(-/-); ApoE(-/-)/AT1R(-/-) + GW9662: 199 ±20, p = 0.01 vs. ApoE(-/-)/AT1R(-/-)), while the anti-inflammatory marker IL-10 was significantly reduced after PPARγ inhibition in GW9662 animals (IL-10 in pg/ml: ApoE(-/-): 18 ±4; ApoE(-/-)/AT1R(-/-): 55 ±12, p = 0.03 vs. ApoE(-/-); ApoE(-/-)/AT1R(-/-) + GW9662: 19 ±4, p = 0.03 vs. ApoE(-/-)/AT1R(-/-)). Metabolic parameters of glucose homeostasis (glucose and insulin tolerance test) were significantly deteriorated in ApoE(-/-)/AT1R(-/-) mice treated with GW9662 as compared to vehicle-treated ApoE(-/-)/AT1R(-/-) mice. Systolic blood pressure and plasma cholesterol levels were similar in all groups.
Conclusions: Genetic disruption of the AT1R attenuates atherosclerosis and improves endothelial function in an ApoE(-/-) mouse model of hypercholesterolemia-induced atherosclerosis via PPARγ, indicating a significant role of PPARγ in reduced vascular inflammation, improvement of insulin sensitivity and atheroprotection of AT1R deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548041 | PMC |
http://dx.doi.org/10.5114/aoms.2015.53309 | DOI Listing |
Arch Med Sci
August 2015
Medizinische Klinik und Poliklinik II, Innere Medizin, Universitätsklinikum Bonn, Bonn, Germany.
Introduction: The angiotensin II type 1 receptor (AT1R) and the peroxisome proliferator-activated receptor γ (PPARγ) have been implicated in the pathogenesis of atherosclerosis. A number of studies have reported that AT1R inhibition or genetic AT1R disruption and PPARγ activation inhibit vascular inflammation and improve glucose and lipid metabolism, underscoring a molecular interaction of AT1R and PPARγ. We here analyzed the hypothesis that vasculoprotective anti-inflammatory and metabolic effects of AT1R inhibition are mediated by PPARγ.
View Article and Find Full Text PDFCardiovasc Diabetol
February 2013
Medizinische Klinik und Poliklinik II, Innere Medizin, Universitätsklinikum Bonn, Sigmund Freud Str, 25, 53105, Bonn, Germany.
Objective: Peroxisome-proliferator-activated-receptor-γ (PPARγ) acts as a transcriptional regulator of multiple genes involved in glucose and lipid metabolism. In vitro studies showed that activated PPARγ suppresses AT1R-gene expression and vice versa. However, it has not yet been determined in vivo, whether AT1R-PPARγ-interactions play a relevant role in the pathogenesis of diabetic complications and specifically in accelerated atherosclerosis.
View Article and Find Full Text PDFBiomed Pharmacother
December 2010
Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
The renin-angiotensin system (RAS) plays critical roles in the pathogenesis of atherosclerosis. Clinical studies demonstrate that pharmacological blockade of RAS with Angiotensin II type 1 receptor (AT1R) blockers (ARBs) is effective in the treatment of patients with cardiovascular diseases. Recent studies reported that telmisartan, an ARB, has a partial agonistic effect on peroxisome proliferator-activated receptor-gamma (PPAR-γ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!