We report simulations of the elastic scattering of atomic hydrogen isotopes and helium beams from graphite (0001) surfaces in an energy range of 1-4 eV. To this aim, we numerically solve a time-dependent Schrödinger equation using a split-step Fourier method. The hydrogen- and helium-graphite potentials are derived from density functional theory calculations using a cluster model for the graphite surface. We observe that the elastic interaction of tritium and helium with graphite differs fundamentally. Whereas the wave packets in the helium beam are directed to the centers of the aromatic cycles constituting the hexagonal graphite lattice, they are directed toward the rings in case of the hydrogen beams. These observations emphasize the importance of swift chemical sputtering for the chemical erosion of graphite and provide a fundamental justification of the graphite peeling mechanism observed in molecular dynamics studies. Our investigations imply that wave packet studies, complementary to classical atomistic molecular dynamics simulations open another angle to the microscopic view on the physics underlying the sputtering of graphite exposed to hot plasma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551279PMC
http://dx.doi.org/10.1007/s00214-013-1337-9DOI Listing

Publication Analysis

Top Keywords

elastic scattering
8
hydrogen isotopes
8
isotopes helium
8
graphite
8
helium graphite
8
graphite 0001
8
0001 surfaces
8
split-step fourier
8
fourier method
8
molecular dynamics
8

Similar Publications

Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.

View Article and Find Full Text PDF

Resonances in Low-Energy Electron Collisions with Salicylic Acid.

J Phys Chem A

January 2025

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.

In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

In the present work, the influence of the addition of graphene nanoplatelets presenting different dimensions on polyurethane-polyisocyanurate aerogel structure and properties has been studied. The obtained aerogels synthesized through a sol-gel method have been fully characterized in terms of density, porosity, specific surface area, mechanical stiffness, thermal conductivity, and speed of sound. Opacified aerogels showing high porosity (>92%) and low densities (78-98 kg/m) have been produced, and the effect of the size and content of graphene nanoplatelets has been studied.

View Article and Find Full Text PDF

This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!