Substratum preference of two species of Xanthoparmelia.

Fungal Biol

Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. Electronic address:

Published: September 2015

The distribution of established saxicolous lichens has been previously studied but substratum preference and elemental composition has been relatively unexplored. The objectives of this study were to compare ascospore germination and growth for two species of Xanthoparmelia using media supplemented with pulverized rock and to explore photobiont selectivity relative to ecological guilds. Mature apothecia from X. cumberlandia and X. viriduloumbrina were subjected to five treatments, which include water agar supplemented with crushed granodiorite, basalt, mica schist, dolostone, and malt yeast agar as the control. The algal actin gene was sequenced and the closest algal matches were retrieved from GenBank and analysed to produce a haplotype network. X. cumberlandia exhibited substratum preference for the mica schist treatment, while X. viriduloumbrina grew better on granodiorite and malt yeast agar relative to dolostone. Ascospore germination for both species failed to progress beyond the initial swelling and protrusion stage on the dolostone treatment. The actin gene sequences for the algae were most similar to those of Trebouxia jamesii. The rock substrates did not correspond with the photobiont haplotypes, which does not support the ecological guild hypothesis. This study provided insights into substratum preference and the suitability of the substratum for algal selection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2015.05.005DOI Listing

Publication Analysis

Top Keywords

substratum preference
16
species xanthoparmelia
8
ascospore germination
8
mica schist
8
malt yeast
8
yeast agar
8
actin gene
8
substratum
5
preference species
4
xanthoparmelia distribution
4

Similar Publications

When two evils are not equal: Differential biofouling of unionid bivalves by two invasive dreissenid species.

Sci Total Environ

September 2024

Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, ul. Lwowska 1, 87-100 Toruń, Poland.

Byssate bivalves are ecosystem engineers with world-wide impact on aquatic communities through habitat forming and biofouling of hard-shelled organisms. In fresh waters, they are represented by invasive Ponto-Caspian dreissenid mussels spreading throughout Europe and North America. They negatively affect globally threatened unionid mussels by fouling, which deteriorates their condition and survival.

View Article and Find Full Text PDF

Benthic functionality under climate-induced environment changes offshore on the Antarctic Peninsula continental shelf.

Mar Environ Res

February 2024

Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; National Antarctic Research Centre (NARC) - UMT, ICAMB Building, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia. Electronic address:

Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability.

View Article and Find Full Text PDF

Effects of substratum type and orientation on the recruitment of bryozoans in an artificial area of the Western Atlantic.

Biofouling

November 2023

Laboratório de Estudos de Bryozoa (LAEBry), Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brasil.

Bryozoans are commonly associated with various artificial structures in marine environments and have been responsible for several bioinvasion events worldwide. Understanding the interactions between bryozoans and artificial structures is therefore essential to prevent the establishment and spread of potential bioinvaders. This study investigated bryozoan recruitment on four different substrates (PET, nautical ropes, metal, and PVC) placed in three orientations (vertical, horizontal facing down and facing up) in an area of the Western Atlantic.

View Article and Find Full Text PDF

Biofilm cultivation is considered a promising method to achieve higher microalgae biomass productivity with less water consumption and easier harvest compared to conventional suspended cultivation. However, studies focusing on the selection of substratum material and optimization of the growth of certain microalgae species on specific substratum are limited. This study investigated the selection of membranous and fabric fiber substrata for the attachment of unicellular microalgae Scenedesmus dimorphus and filamentous microalgae Tribonema minus in biofilm cultivation.

View Article and Find Full Text PDF

The diversity of iron acquisition strategies of calcifuge plant species from dry acidic grasslands.

J Plant Physiol

January 2023

University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Computer and Analytical Techniques, Banacha 12/16, 90-237, Łódź, Poland.

Although the calcifuge plant species existing in dry acidic grasslands are believed to be prone to iron (Fe)-dependent limitations, little is known about their susceptibility and reaction to pH-dependent Fe starvation. Therefore, the present study examines the effects of contrasting soils (acidic Podzol vs alkaline Rendzina) and Fe supplementation (Fe-HBED) on alkaline substratum (5 and 25 μmol Fe-HBED kg soil). Five calcifuge dicotyledonous plant species (Alyssum montanum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!