Salicylates are used as fragrance and flavor ingredients for foods, as UV absorbers and as medicines. Here, we examined the hydrolytic metabolism of phenyl and benzyl salicylates by various tissue microsomes and plasma of rats, and by human liver and small-intestinal microsomes. Both salicylates were readily hydrolyzed by tissue microsomes, predominantly in small intestine, followed by liver, although phenyl salicylate was much more rapidly hydrolyzed than benzyl salicylate. The liver and small-intestinal microsomal hydrolase activities were completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Phenyl salicylate-hydrolyzing activity was co-eluted with carboxylesterase activity by anion exchange column chromatography of the Triton X-100 extracts of liver and small-intestinal microsomes. Expression of rat liver and small-intestinal isoforms of carboxylesterase, Ces1e and Ces2c (AB010632), in COS cells resulted in significant phenyl salicylate-hydrolyzing activities with the same specific activities as those of liver and small-intestinal microsomes, respectively. Human small-intestinal microsomes also exhibited higher hydrolyzing activity than liver microsomes towards these salicylates. Human CES1 and CES2 isozymes expressed in COS cells both readily hydrolyzed phenyl salicylate, but the activity of CES2 was higher than that of CES1. These results indicate that significant amounts of salicylic acid might be formed by microsomal hydrolysis of phenyl and benzyl salicylates in vivo. The possible pharmacological and toxicological effects of salicylic acid released from salicylates present in commercial products should be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2015.08.024DOI Listing

Publication Analysis

Top Keywords

liver small-intestinal
20
small-intestinal microsomes
16
phenyl benzyl
12
benzyl salicylates
12
hydrolytic metabolism
8
metabolism phenyl
8
microsomes
8
tissue microsomes
8
microsomes salicylates
8
phenyl salicylate
8

Similar Publications

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

Objective: This study aims to enhance the understanding of underlying mechanisms and potential therapies of the solute carrier organic anion (SLCO) transporter family in internal environment disorder (IED)-induced hepatocellular carcinoma (HCC). This could lead to new therapeutic strategies and offer new directions for the creation of new patents for HCC treatment products.

Methods: The orthotopic transplantation (OT), IED and IED-based OT (IED-OT) mouse models were established.

View Article and Find Full Text PDF

The gut-liver axis and its interactions are essential for host physiology. Thus, we examined the jejunal microbiota, fermentation parameters, digestive enzymes, morphology, and liver metabolic profiles in different growth development lambs to investigate the liver-gut axis's role in their development. One hundred male Hu lambs of similar birth weight and age were raised under the same conditions until they reached 180 days of age.

View Article and Find Full Text PDF

Gut Microbiota Regulates the Homeostasis of Dendritic Epidermal T Cells.

Life (Basel)

December 2024

Laboratory of Inflammation Research, School of Life Science, Handong Global University, Pohang 37554, Republic of Korea.

Dendritic epidermal T cells (DETCs) are a γδ T cell subset residing in the skin epidermis. Although they have been known for decades, the fate of DETCs has largely remained enigmatic. Recent studies have highlighted the relationship between the gut microbiome and γδ T cells in various epithelial and non-epithelial tissues, such as the small intestine, lung, liver, gingiva, and testis.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection.

Vet Microbiol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:

Article Synopsis
  • Porcine epidemic diarrhea virus (PEDV) is extremely deadly for neonatal piglets, with a mortality rate that can reach 100%, causing significant economic losses in the pig industry.
  • The study identifies dipeptidyl peptidase 4 (DPP4) as a cofactor that enhances PEDV invasion and replication by mapping its expression in various piglet tissues and showing its distribution in intestinal cells.
  • Research indicates that inhibiting DPP4 reduces PEDV infection, and experiments suggest that DPP4 and PEDV interact directly, reinforcing the idea that DPP4 plays a crucial role in the virus’s ability to infect pigs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!