VP1, VP2 and VP3 molecules of hepatitis A virus are exposed capsid proteins that have shown to be antigenic and are used for diagnosis in recombinant-antigen commercial kits. In this study, we developed a sequence analysis in order to predict diagnostic peptide epitopes, followed by their spot synthesis on functionalized cellulose paper (Pepscan). This paper with synthetic peptides was tested against a sera pool of hepatitis A patients. Two peptide sequences, that have shown an antigenic recognition, were selected for greater scale synthesis on resin. A dimeric form of one of these peptides (IMT-1996), located in the C-Terminus region of protein VP1, was antigenic with a recognition frequency of 87-100% of anti-IgG antibodies and 100% of anti-IgM antibodies employing the immunological assays MABA and ELISA. We propose peptide IMT-1996, with less than twenty residues, as a cheaper alternative for prevalence studies and diagnosis of hepatitis A infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2015.08.013 | DOI Listing |
Bioorg Chem
January 2025
Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India. Electronic address:
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.
View Article and Find Full Text PDFChem Sci
January 2025
Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!