Meditation is becoming an increasingly popular topic for scientific research and various effects of extensive meditation practice (ranging from weeks to several years) on cognitive processes have been demonstrated. Here we show that extensive practice may not be necessary to achieve those effects. Healthy adult non-meditators underwent a brief single session of either focused attention meditation (FAM), which is assumed to increase top-down control, or open monitoring meditation (OMM), which is assumed to weaken top-down control, before performing an Attentional Blink (AB) task - which assesses the efficiency of allocating attention over time. The size of the AB was considerably smaller after OMM than after FAM, which suggests that engaging in meditation immediately creates a cognitive-control state that has a specific impact on how people allocate their attention over time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.concog.2015.08.006DOI Listing

Publication Analysis

Top Keywords

top-down control
8
attention time
8
meditation
5
meditation-induced states
4
states predict
4
predict attentional
4
attentional control
4
control time
4
time meditation
4
meditation increasingly
4

Similar Publications

The purpose of the present narrative review was to propose a unifying generalized conceptual model of mechanisms and processes in appetite self-regulation (ASR) in childhood. Appetite self-regulation, along with other domains of self-regulation, develops across childhood and contributes to energy intake and balance, diet quality, weight, and therefore long-term health outcomes. There have been efforts to conceptualize and measure components of ASR and associated processes/mechanisms, but, at present, there is no unifying conceptualization of ASR in childhood.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Stable Soil Biota Network Enhances Soil Multifunctionality in Agroecosystems.

Glob Chang Biol

January 2025

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.

View Article and Find Full Text PDF

Dramatic effect of extreme rainfall event and storm on microbial community dynamics in a subtropical coastal region.

Sci Total Environ

January 2025

Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan. Electronic address:

Extreme weather events, such as heavy rainfall and typhoons, are becoming more frequent due to climate change and can significantly impact coastal microbial communities. This study examines the short-term alterations in microbial food webs-viruses, bacteria, picophytoplankton, nanoflagellates, ciliates, and diatom-following Typhoon Krathon in Taiwan's coastal waters in October 2024. Daily in situ sampling revealed a significant post-typhoon increased in viral, nanoflagellate, and Synechococcus spp.

View Article and Find Full Text PDF

Studies of perception have long shown that the brain adds information to its sensory analysis of the physical environment. A touchstone example for humans is language use: to comprehend a physical signal like speech, the brain must add linguistic knowledge, including syntax. Yet, syntactic rules and representations are widely assumed to be atemporal (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!