A novel amperometric magnetoimmunoassay, based on the use of core-shell magnetic nanoparticles and screen-printed carbon electrodes, was developed for the selective determination of Legionella pneumophila SG1. A specific capture antibody (Ab) was linked to the poly(dopamine)-modified magnetic nanoparticles (MNPs@pDA-Ab) and incubated with bacteria. The captured bacteria were sandwiched using the antibody labeled with horseradish peroxidase (Ab-HRP), and the resulting MNPs@pDA-Ab-Legionella neumophila-Ab-HRP were captured by a magnetic field on the electrode surface. The amperometric response measured at -0.15 V vs. Ag pseudo-reference electrode of the SPCE after the addition of H2O2 in the presence of hydroquinone (HQ) was used as transduction signal. The achieved limit of detection, without pre-concentration or pre-enrichment steps, was 10(4) Colony Forming Units (CFUs) mL(-1). The method showed a good selectivity and the MNPs@pDA-Ab exhibited a good stability during 30 days. The possibility of detecting L. pneumophila at 10 CFU mL(-1) level in less than 3 h, after performing a membrane-based preconcentration step, was also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2015.05.048 | DOI Listing |
Anal Methods
September 2020
College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.
View Article and Find Full Text PDFChemSusChem
January 2025
Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology, Chemistry and Biotechnology, AUSTRALIA.
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey. Electronic address:
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFeOMNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFeOMNPs (1, 10, 100 mg/L) both individually and with TMX.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan. Electronic address:
Free fentanyl is responsible for its pharmacological effects, but its total concentration is typically determined for therapeutic drug monitoring purposes. Determination of fentanyl concentration can help reduce the prescribed doses, leading to fewer side effects and increased effectiveness. Therefore, predicting free drug concentration in pharmaceutical research is crucial.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
January 2025
Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
Prostate cancer is the second most common cancer in men, accounting for 14.1% of new cancer cases in 2020. The aggressiveness of prostate cancer is highly variable, depending on its grade and stage at the time of diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!