Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

Anal Chim Acta

Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

Published: August 2015

Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2015.04.022DOI Listing

Publication Analysis

Top Keywords

stationary phases
16
high-performance liquid
8
liquid chromatography
8
il-functionalized silica
8
silica stationary
8
stationary
5
versatile ligands
4
ligands high-performance
4
chromatography overview
4
overview ionic
4

Similar Publications

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Retention mechanism on phosphodiester stationary phases in HILIC and purely aqueous mobile phase, Part I: The problem of hold-up volume determination.

J Chromatogr A

December 2024

HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:

Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl View Article and Find Full Text PDF

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!