A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of the cis-trans isomerization barriers of L-alanyl-L-proline in aqueous solutions and at water/hydrophobic interfaces by on-line temperature-jump relaxation HPLC and dynamic on-column reaction HPLC. | LitMetric

Proline cis-trans isomerization is known to play a key role in the rate-determining steps of protein folding. It is thus very important to understand the influence of environments, not only bulk solutions but also microenvironments such as interfaces, on the isomerization reaction of proline peptides. Here we present two HPLC methods for measurements of kinetic and equilibrium parameters for the isomerization reactions in bulk solutions and at liquid/solid interfaces. On-line temperature-jump relaxation HPLC (T-jump HPLC) allows the determination of forward and reverse rate constants of the isomerization in a bulk solution by monitoring the whole time course of conversion of pure isomers from both sides of the reaction, in contrast to other HPLC and capillary zone electrophoresis as well as spectrometric and calorimetric methods, which use a mixture of the isomers. We can then determine cis-trans isomerization barriers of the peptide at liquid/solid interfaces from the kinetic data obtained by dynamic on-column reaction HPLC and T-jump HPLC. We observed that the interconversion around the peptide bond for l-alanyl-l-proline (Ala-Pro) in water is accelerated at the surfaces of an alkyl-bonded silica and a poly(styrene-divinylbenzene) copolymer resin, and this is caused by a remarkable decrease in the enthalpy of activation. The molecular structures of the cis and trans forms of Ala-Pro estimated by quantum mechanics calculation reveal that an equilibrium shift toward the cis form as well as the rapid isomerization of Ala-Pro at the water/hydrophobic interfaces can be attributed to the lower polarity of the interfacial water at the surfaces of the hydrophobic materials compared to that of bulk water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b02488DOI Listing

Publication Analysis

Top Keywords

cis-trans isomerization
12
isomerization barriers
8
water/hydrophobic interfaces
8
interfaces on-line
8
on-line temperature-jump
8
temperature-jump relaxation
8
hplc
8
relaxation hplc
8
dynamic on-column
8
on-column reaction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!