The development of shale gas resources in the United States has been controversial as governments have been tardy in devising sufficient safeguards to protect both people and the environment. Alleged health and environmental damages suggest that other countries around the world that decide to develop their shale gas resources can learn from these problems and take further actions to prevent situations resulting in the release of harmful pollutants. Looking at U.S. federal regulations governing large animal operations under the permitting provisions of the Clean Water Act, the idea of a permitting program is proposed to respond to the risks of pollution by shale gas development activities. Governments can require permits before allowing the drilling of a new gas well. Each permit would include fluids and air emissions reduction plans containing best management practices to minimize risks and releases of pollutants. The public availability of permits and permit applications, as occurs for water pollution under various U.S. permitting programs, would assist governments in protecting public health. The permitting proposals provide governments a means for providing further assurances that shale gas development projects will not adversely affect people and the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2015.08.019 | DOI Listing |
Chemistry
January 2025
Sichuan University, School of Chemical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China, 610065, Chendu, CHINA.
Li1.3Al0.3Ti1.
View Article and Find Full Text PDFiScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Porous liquids (PLs) have emerged as a promising class of flow porous materials, offering distinctive benefits for sustainable separation processes coupled with catalytic transformations in the chemical industry. Despite their potential, challenges remain in the realms of synthesis complexity, stability, and the strategic engineering of separation and catalytic sites. In this study, a scalable mechanochemical synthetic approach is reported to fabricate Type III PLs from solid precursors with high stability.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
The unique adhesion capabilities of soft-bodied creatures such as leeches and octopuses have provided considerable inspiration for the development of artificial adhesive materials. However, previous studies have either focused on the design of sucker structures or concentrated on the synthesis of adhesive materials, with the combination of these two aspects not yet having been deeply investigated. In this study, inspired from leech's unique adsorption ability, a biomimetic approach is proposed that combined artificial sucker and mucus, to achieve remarkable adhesion stability on rough surfaces using 5 cm diameter silicone suction cups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!