Symbioses provide a way to surpass the limitations of individual microbes. Natural communities exemplify this in symbioses like lichens and biofilms that are robust to perturbations, an essential feature in fluctuating environments. Metabolic capabilities also expand in consortia enabling the division of labor across organisms as seen in photosynthetic and methanogenic communities. In engineered consortia, the external environment provides levers of control for microbes repurposed from nature or engineered to interact through synthetic biology. Consortia have successfully been applied to real-world problems including remediation and energy, however there are still fundamental questions to be answered. It is clear that continued study is necessary for the understanding and engineering of microbial systems that are more than the sum of their parts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2015.08.008 | DOI Listing |
J Mol Neurosci
January 2025
Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA.
Research on pancreatic cancer has transformed with the advent of organoid technology, providing a better platform that closely mimics cancer biology in vivo. This review highlights the critical advancements facilitated by pancreatic organoid models in understanding disease progression, evaluating therapeutic responses, and identifying biomarkers. These three-dimensional cultures enable the proper recapitulation of the cellular architecture and genetic makeup of the original tumors, providing insights into the complex molecular and cellular dynamics at various stages of pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFAm J Ophthalmol
January 2025
Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan; Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, Michigan; Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan. Electronic address:
Purpose: A previously developed machine-learning approach with Kalman-filtering technology accurately predicted disease trajectory for patients with various glaucoma types and severities using clinical trials data. This study assesses performance of the KF approach with real-world data.
Design: Retrospective cohort study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!