Coronary artery disease (CAD) often leads to myocardial infarction, which may be fatal. Risk factors can be used to predict CAD, which may subsequently lead to prevention or early intervention. Patient data such as co-morbidities, medication history, social history and family history are required to determine the risk factors for a disease. However, risk factor data are usually embedded in unstructured clinical narratives if the data is not collected specifically for risk assessment purposes. Clinical text mining can be used to extract data related to risk factors from unstructured clinical notes. This study presents methods to extract Framingham risk factors from unstructured electronic health records using clinical text mining and to calculate 10-year coronary artery disease risk scores in a cohort of diabetic patients. We developed a rule-based system to extract risk factors: age, gender, total cholesterol, HDL-C, blood pressure, diabetes history and smoking history. The results showed that the output from the text mining system was reliable, but there was a significant amount of missing data to calculate the Framingham risk score. A systematic approach for understanding missing data was followed by implementation of imputation strategies. An analysis of the 10-year Framingham risk scores for coronary artery disease in this cohort has shown that the majority of the diabetic patients are at moderate risk of CAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985289 | PMC |
http://dx.doi.org/10.1016/j.jbi.2015.08.003 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEur Stroke J
January 2025
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).
Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.
Br J Hosp Med (Lond)
January 2025
Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
The Geriatric Nutritional Risk Index (GNRI) is an effective tool for identifying malnutrition, and helps monitor the prognosis of patients undergoing maintenance hemodialysis. However, the association between the GNRI and cardiovascular or all-cause mortality in hemodialysis patients remains unclear. Therefore, this study investigated the correlation of the GNRI with all-cause and cardiovascular mortality in patients undergoing maintenance hemodialysis.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Surgery & Cancer, Imperial College London, London, UK.
Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Speech and Language Rehabilitation Department, Beijing Rehabilitation Hospital Affiliated with Capital Medical University, Beijing, China.
The background for establishing and verifying a dehydration prediction model for elderly patients with post-stroke dysphagia (PSD) based on General Utility for Latent Process (GULP) is as follows: For elderly patients with PSD, GULP technology is utilized to build a dehydration prediction model. This aims to improve the accuracy of dehydration risk assessment and provide clinical intervention, thereby offering a scientific basis and enhancing patient prognosis. This research highlights the innovative application of GULP technology in constructing complex medical prediction models and addresses the special health needs of elderly stroke patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!