Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-015-0369-z | DOI Listing |
New Phytol
September 2024
Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells.
View Article and Find Full Text PDFRice (N Y)
February 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
Background: Hybrid rice has significant yield advantage and stress tolerance compared with inbred rice. However, production of hybrid rice seeds requires extensive manual labors. Currently, hybrid rice seeds are produced by crosspollination of male sterile lines by fertile paternal lines.
View Article and Find Full Text PDFPlant Mol Biol
October 2015
Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro.
View Article and Find Full Text PDFTuberculosis (Edinb)
December 2013
Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Center for Airborne Pathogens Research and Imaging, Medical Research & Education Building, 8447 State Hwy 47, Bryan, TX 77807, USA. Electronic address:
Using a high throughput genetic strategy, designated Random Inducible Controlled Expression (RICE), we identified the six gene mel2 locus in Mtb and M. marinum. Interestingly, three of the genes present in mel2 have similarities to bioluminescence genes.
View Article and Find Full Text PDFJ Econ Entomol
October 2012
Agrochemical Research Center, Mitsui Chemicals Agro, Inc., Mobara, Chiba 297-0017, Japan.
The beetle Oulema oryzae Kuwayama (Coleoptera: Chrysomelidae), an important pest of rice, has developed fipronil resistance in Japan. Molecular cloning and sequence analysis of O. oryzae RDL gamma-aminobutyric acid (GABA) receptor subunit (OO-RDL) genes from fipronil-susceptible and -resistant O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!