18.222.91.173=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=26319503&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490818.222.91.173=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=helical+angle&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490818.222.91.173=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a66c525d65ff10aea5d&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Quantifying foot deformation using finite helical angle. | LitMetric

Quantifying foot deformation using finite helical angle.

J Biomech

Aix-Marseille University, CNRS, ISM UMR 7287, 163 avenue de Luminy, 13288 Marseille cedex 09, France.

Published: October 2015

Foot intrinsic motion originates from the combination of numerous joint motions giving this segment a high adaptive ability. Existing foot kinematic models are mostly focused on analyzing small scale foot bone to bone motions which require both complex experimental methodology and complex interpretative work to assess the global foot functionality. This study proposes a method to assess the total foot deformation by calculating a helical angle from the relative motions of the rearfoot and the forefoot. This method required a limited number of retro-reflective markers placed on the foot and was tested for five different movements (walking, forefoot impact running, heel impact running, 90° cutting, and 180° U-turn) and 12 participants. Overtime intraclass correlation coefficients were calculated to quantify the helical angle pattern repeatability for each movement. Our results indicated that the method was suitable to identify the different motions as different amplitudes of helical angle were observed according to the flexibility required in each movement. Moreover, the results showed that the repeatability could be used to identify the mastering of each motion as this repeatability was high for well mastered movements. Together with existing methods, this new protocol could be applied to fully assess foot function in sport or clinical contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2015.07.044DOI Listing

Publication Analysis

Top Keywords

helical angle
16
foot deformation
8
impact running
8
foot
7
quantifying foot
4
deformation finite
4
helical
4
finite helical
4
angle
4
angle foot
4

Similar Publications

Study on Crack Resistance Mechanism of Helical Carbon Nanotubes in Nanocomposites.

Nanomaterials (Basel)

January 2025

Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong.

Helical carbon nanotubes (HCNTs) with different geometrical properties were constructed and incorporated into nanocomposites for the investigation of the anti-crack mechanism. The interfacial mechanical properties of the nanocomposites reinforced with straight carbon nanotubes and various types of HCNTs were investigated through the pullout of HCNTs in the crack propagation using molecular dynamics (MD). The results show that the pullout force of HCNTs is much higher than that of CNTs because the physical interlock between HCNTs and matrices is much stronger than the van der Waals (vdW) interactions between CNTs and matrices.

View Article and Find Full Text PDF

The stability of proteins and small peptides depends on the way they interact with the surrounding water molecules. For small peptides, such as -helical polyalanine (polyALA), water molecules can weaken the intramolecular hydrogen-bonds (HB) formed between the peptide backbone O and NH groups which are responsible for the -helix structure. Here, we perform molecular dynamics simulations to study the hydration of polyALA, polyserine (polySER), and other homopolymer peptide -helices at different temperatures and pressures.

View Article and Find Full Text PDF

Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Cellulose-based photo-curable chiral nematic ink for direct-ink-writing 3D printing.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

3D printing technology is one of the most promising strategies for constructing topological functional materials. The development of functional inks is a core issue in the technical development of 3D printing technology. In this study, we engineered photonic crystal inks based on chiral nematic liquid crystals of cellulose derivative, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!