Delamanid (OPC-67683) is a novel nitro-dihydroimidazo-oxazole derivative that is being developed by Otsuka Pharmaceutical Co., Ltd., Japan (referred to as Otsuka hereafter) for the treatment of tuberculosis (TB). An ultra-high performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for the determination of OPC-67683 and its eight metabolites, DM-6704, DM-6705, DM-6706, DM-6717, DM-6718, DM-6720, DM-6721 and DM-6722 in human plasma to support regulated clinical development. During method development several technical challenges such as poor chromatography, separation of structural isomers, conversion of the analytes, instability in matrix and long cycle time were encountered and overcome. A protein precipitation extraction (PPE) was used to extract plasma samples (50μL) and the resulting extracts were analyzed using reversed phase UHPLC-MS/MS with a electrospray (ESI) and selected reaction monitoring (SRM). The method was fully validated over the calibration curve range of 1.00-500ng/mL for all nine analytes with linear regression and 1/x(2) weighting according to regulatory guidance for bioanalysis. Based on three inter-day precision and accuracy runs, the between-run % relative standard deviation (RSD) for all nine analytes varied from 0.0 to 11.9% and the accuracy ranged from 92.7% to 102.5% of nominal at all quality controls (QC) concentrations, including the lower limit of quantitation (LLOQ) QC at 1.00ng/mL. The extraction recovery of OPC-67683 and its eight metabolites were above 95%. Various short term and long term solution and matrix stability were established including the stability of OPC-67683 and its eight metabolites in human plasma for 708 days at -70°C. Although this method has been used to support regulated clinic studies during the last decade and over ten thousand samples have been analyzed, this is the first time that the method development process and validation data have been published.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2015.07.058 | DOI Listing |
Adv Sci (Weinh)
October 2024
NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, P. R. China.
Tuberculosis (TB), the leading cause of death from bacterial infections worldwide, results from infection with Mycobacterium tuberculosis (Mtb). The antitubercular agents delamanid (DLM) and pretomanid (PMD) are nitroimidazole prodrugs that require activation by an enzyme intrinsic to Mtb; however, the mechanism(s) of action and the associated metabolic pathways are largely unclear. Profiling of the chemical-genetic interactions of PMD and DLM in Mtb using combined CRISPR screening reveals that the mutation of rv2073c increases susceptibility of Mtb to these nitroimidazole drugs both in vitro and in infected mice, whereas mutation of rv0078 increases drug resistance.
View Article and Find Full Text PDFNat Commun
June 2023
Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Mycobacterium tuberculosis is one of the global leading causes of death due to a single infectious agent. Pretomanid and delamanid are new antitubercular agents that have progressed through the drug discovery pipeline. These compounds are bicyclic nitroimidazoles that act as pro-drugs, requiring activation by a mycobacterial enzyme; however, the precise mechanisms of action of the active metabolite(s) are unclear.
View Article and Find Full Text PDFJ Pharm Biomed Anal
April 2023
Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa. Electronic address:
The penetration of the antituberculosis drug delamanid into the central nervous system is not established. The distribution of delamanid and its major metabolite, DM-6705, into the cerebrospinal fluid requires investigation. A liquid chromatography-tandem mass spectrometry method for the quantification of delamanid and DM-6705 in human cerebrospinal fluid was developed and validated.
View Article and Find Full Text PDFClin Pharmacol Ther
October 2022
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Delamanid and bedaquiline are two drugs approved to treat drug-resistant tuberculosis, and each have been associated with corrected QT interval (QTc) prolongation. We aimed to investigate the relationships between the drugs' plasma concentrations and the prolongation of observed QT interval corrected using Fridericia's formula (QTcF) and to evaluate their combined effects on QTcF, using a model-based population approach. Furthermore, we predicted the safety profiles of once daily regimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!