Rationale: 3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) are synthetic drugs found in so-called "bath salts" products. Both drugs exert their effects by interacting with monoamine transporter proteins. MDPV is a potent uptake blocker at transporters for dopamine and norepinephrine while methylone is a non-selective releaser at transporters for dopamine, norepinephrine, and serotonin (5-HT).
Objectives: We hypothesized that prominent 5-HT-releasing actions of methylone would render this drug less reinforcing than MDPV.
Methods: To test this hypothesis, we compared behavioral effects of MDPV and methylone using intravenous (i.v.) self-administration on a fixed-ratio 1 schedule in male rats. Additionally, neurochemical effects of the drugs were examined using in vivo microdialysis in nucleus accumbens, in a separate cohort of rats.
Results: MDPV self-administration (0.03 mg/kg/inj) was acquired rapidly and reached 40 infusions per session, similar to the effects of cocaine (0.5 mg/kg/inj), by the end of training. In contrast, methylone self-administration (0.3 and 0.5 mg/kg/inj) was acquired slowly, and response rates only reached 20 infusions per session by the end of training. In dose substitution studies, MDPV and cocaine displayed typical inverted U-shaped dose-effect functions, but methylone did not. In vivo microdialysis revealed that i.v. MDPV (0.1 and 0.3 mg/kg) increased extracellular dopamine while i.v. methylone (1 and 3 mg/kg) increased extracellular dopamine and 5-HT.
Conclusions: Our findings support the hypothesis that elevations in extracellular 5-HT in the brain can dampen positive reinforcing effects of cathinone-type drugs. Nevertheless, MDPV and methylone are both self-administered by rats, suggesting these drugs possess significant abuse liability in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772144 | PMC |
http://dx.doi.org/10.1007/s00213-015-4057-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!