Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.

Int J Biol Macromol

International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala, India. Electronic address:

Published: November 2015

Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.08.053DOI Listing

Publication Analysis

Top Keywords

jute fibers
12
natural rubber
8
nanocellulose
5
nanocelluloses jute
4
fibers
4
fibers nanocomposites
4
nanocomposites natural
4
rubber preparation
4
preparation characterization
4
characterization nanocellulose
4

Similar Publications

This study investigated a composite material combining epoxy with hybrid jute (J) and glass (G) fibers. A straightforward and effective fabrication method was employed, utilizing five layers with various reinforcement materials. To identify the optimal combination, a comprehensive series of tests were conducted using a range of characterization instruments, including Scanning Electron Microscopy (SEM), Universal Testing Machine (UTM), pendulum impact tester, density measurement, specific gravity evaluation, water absorption, and swelling thickness tests.

View Article and Find Full Text PDF

Numerous corporations have overlooked environmental regulations concerning wastewater treatment, leading to a worldwide issue regarding hazardous pollutant discharge, particularly dyes and heavy metal ions, into river sources. Various industries, with water, energy, and biological sectors, actively employ membranes. Membranes capable of showing flux, metal and dye sorption, and catalysis have been developed and are extensively used by functionalizing the pores of ultrafiltration, microfiltration, and nanofiltration membranes with responsive properties.

View Article and Find Full Text PDF

This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber.

View Article and Find Full Text PDF

In recent years, consumers have become increasingly interested in natural, biodegradable and eco-friendly composites. Eco-friendly composites manufactured using natural reinforcing filling materials stand out with properties such as cost effectiveness and easy accessibility. For these reasons, in this research, a composite workpiece was specially manufactured using eco-friendly jute fibers.

View Article and Find Full Text PDF

Natural Fiber-Based Polymer Composites for Biomedical Applications.

J Biomater Sci Polym Ed

December 2024

Department of Mechanical Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey.

Natural fibers such as kenaf, sisal, ramie, jute, hemp, flax, coir, banana and bamboo have been employed in the production of biocomposites. A great strength-to-weight ratio, renewability and sustainability are some important properties of natural fibers. Biocomposites produced from natural fibers are employed in biomedical fields such as delivery of drug, orthopaedic applications, tissue engineering and wound dressing owing to their acceptability by the human body, moderate mechanical performance and environmental benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!