It has been known that the intracellular Ca(2+) level transiently rises at the specific stages of mitosis such as the moment of nuclear envelope breakdown and at the metaphase-anaphase transition. Comparable intracellular Ca(2+) increases may also take place during meiosis, as was intermittently reported in mouse, Xenopus, and starfish oocytes. In a majority of starfish species, the maturing oocytes display an intracellular Ca(2+) increase within few minutes after the addition of the maturation hormone, 1-methyladenine (1-MA). Although starfish oocytes at meiosis also manifest a Ca(2+) increase at the time of polar body extrusion, a similar Ca(2+) increase has never been observed during the envelope breakdown of the nucleus (germinal vesicle, GV). Here, we report, for the first time, the existence of an additional Ca(2+) response in the maturing oocytes of Asterina pectinifera at the time of GV breakdown. In contrast to the immediate early Ca(2+) response to 1-MA, which is independent of external Ca(2+) and takes a form of intracellular Ca(2+) wave traveling three times as fast as that in the fertilized eggs, this late stage Ca(2+) response comprised a train of numerous spikes representing Ca(2+) influx. These Ca(2+) spikes coinciding with GV breakdown were mostly eliminated when the GV was removed from the oocytes prior to the addition of 1-MA, suggesting that the Ca(2+) spikes are rather a consequence of the GV breakdown. In support of the idea that these Ca(2+) spikes play a physiological role, the oocytes matured in calcium-free seawater had a higher rate of cleavage failure 2h after the fertilization in natural seawater. Specific inhibitors of L-type Ca(2+) channels, verapamil and diltiazem, severely suppressed the amplitude of the individual Ca(2+) spikes, but not their frequencies. On the other hand, latrunculin-A (LAT-A), which promotes net depolymerization of the actin cytoskeleton, had a dual effect on this late Ca(2+) response. When added immediately after the hormone-dependent period, LAT-A inhibited the occurrence (frequency) of the spikes in a dose-dependent manner, but the amplitude of the prevailing Ca(2+) spikes itself was rather significantly increased. These results suggest that the cortical actin cytoskeleton and some nuclear factors may play a role in regulating ion channel activities during this stage of meiotic progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2015.08.002 | DOI Listing |
J Comput Neurosci
December 2024
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells.
View Article and Find Full Text PDFPLoS One
December 2024
Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.
View Article and Find Full Text PDFPflugers Arch
December 2024
Department of Biophysics, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey.
Epilepsy is a chronic neurological disease characterized by recurrent seizures caused by abnormal electrical activity in the brain. The aim of our study was to investigate the effect of tDCS on oxidative stress, Ca, glutamate, GABA, AMPAR1, and NMDAR1 levels in kindling-induced epilepsy model. Behavioral tests evaluated motor and cognitive functions, while assessing oxidative stress, Ca, glutamate, GABA, AMPAR1, and NMDAR1 levels in hippocampal tissue.
View Article and Find Full Text PDFNat Commun
December 2024
LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
Curr Opin Chem Biol
December 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK. Electronic address:
Intracellular calcium (Ca) is involved in a plethora of cell signalling processes and physiological functions. Increases in Ca concentration are bona fide biomarkers of neuronal activity, reflecting the spike count, timing, frequency, and the intensity of synaptic input. The development of genetically encoded calcium indicators (GECIs) was a significant advancement in modern neuroscience that enabled real-time visualisation of neuronal activity at single-cell resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!