Esterases expressed in microbial hosts are commercially valuable, but their applications are limited due to high costs of production and harsh industrial processes involved. In this study, the esterase-DSM (from Clostridium thermocellum) was expressed and successfully displayed on the spore surface, and the spore-associated esterase was confirmed by western blot analysis and activity measurements. The optimal temperature and pH of spore surface-displayed DSM was 60 and 8.5 °C, respectively. It also demonstrates a broad temperature and pH optimum in the range of 50-70, 7-9.5 °C. The spore surface-displayed esterase-DSM retained 78, 68 % of its original activity after 5 h incubation at 60 and 70 °C, respectively, which was twofold greater activity than that of the purified DSM. The recombinant spores has high activity and stability in DMSO, which was 49 % higher than the retained activity of the purified DSM in DMSO (20 % v/v), and retained 65.2 % of activity after 7 h of incubation in DMSO (20 % v/v). However, the recombinant spores could retain 77 % activity after 3 rounds of recycling. These results suggest that enzyme displayed on the surface of the Bacillus subtilis spore could serve as an effective approach for enzyme immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-015-1676-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!