Essential oils have been suggested as suitable alternatives for controlling insect pests. However, the potential adaptive responses elicited in insects for mitigating the actions of these compounds have not received adequate attention. Furthermore, as is widely reported with traditional insecticides, sublethal exposure to essential oils might induce stimulatory responses or contribute to the development of resistance strategies that can compromise the management of insect pests. The current study evaluated the locomotory and respiratory responses as well as the number of larvae per grain produced by the maize weevil, Sitophilus zeamais Motschulsky, after being sublethally exposed to the essential oils of clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L. The essential oils showed similar insecticidal toxicity (exposure route: contact with dried residues; Clove LC95 = 3.96 [2.78-6.75] µl/cm(2); Cinnamon LC95 = 3.47 [2.75-4.73] µl/cm(2)). A stimulatory effect on the median survival time (TL50) was observed when insects were exposed to low concentrations of each oil. Moreover, a higher number of larvae per grain was produced under sublethal exposure to clove essential oil. S. zeamais avoided the treated areas (in free-choice experiments) and altered their mobility when sublethally exposed to both essential oils. The respiratory rates of S. zeamais (i.e., CO2 production) were significantly reduced under low concentrations of the essential oils. We recommend the consideration of the potential sublethal effects elicited by botanical pesticides during the development of integrated pest management programs aiming to control S. zeamais.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/tov255 | DOI Listing |
Metabolites
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency and sustainability. The use of L.
View Article and Find Full Text PDFChin J Nat Med
December 2024
Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China. Electronic address:
Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.
View Article and Find Full Text PDFArch Microbiol
December 2024
Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!