Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In situ EQCM experiments were used to investigate the stability and roughness changes occurring in a sulfur-carbon cathode utilized for a Li-S battery during the charge-discharge process. Results show that the sulfur-carbon cathode gains mass during the first discharge plateau (∼2.4 V) due to the formation of the long chain polysulfides during the discharge (lithiation) process. However, further discharge to below 2.4 V yields an increase in the crystal resistance (Rc) suggesting the sulfur-carbon cathode becomes rougher. During the charge (delithiation) process, the roughness of the sulfur-carbon cathode decreases. Time dependent measurements show that the electrode surface becomes rougher with the deeper discharge, with the change occurring following a step to 1.5 V. The sulfur-carbon cathode exhibits stable Rc and frequency behavior initially, but then becomes rougher in subsequent following cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b05955 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!