Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552844 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134592 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!