The association behaviors of three 1-octanols (1-octanol: C8OH; 1,1,2,2-tetrahydrotridecafluorooctanol: TFC8OH; and 1,1-dihydropentadecafluorooctanol: DFC8OH) in two hydrocarbon solvents (n-hexane and benzene) were examined by vibration spectroscopy from 288.15 to 318.15 K. From the analysis of results with a mass action model, it was found that dimers and tetramers of 1-octanols coexisted with monomers in the n-hexane solution. These aggregates were formed by hydrogen bonding between the OH groups of 1-octanols. In the n-hexane solutions, an increase in the fluorination number of the 1-octanol molecule enhanced the intermolecular hydrogen bonding between the OH groups, but reduced the amounts of polymeric species. Conversely, in the benzene solution, the NIR experiment suggested that the OH groups of 1-octanols did not interact with other OH groups, but with the benzene molecules instead. It was found from (19)F NMR chemical shift measurements that the fluorooctanols in the benzene solution aggregated by interaction between the fluorocarbon chains instead of by hydrogen bonding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp035134o | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.
View Article and Find Full Text PDFSmall
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.
Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
2-(2-Hydroxyphenyl)benzothiazole (HBT) derivatives with donor-π-acceptor (D-π-A) structure have received extensive attention as a class of excited state intramolecular proton transfer (ESIPT) compounds in the fields of biochemistry and photochemistry. The effects of electron-donors (triphenylamine and anthracenyl), the position of substituents and solvent polarity on the fluorescence properties and ESIPT mechanisms of HBT derivatives were investigated through time-dependent density functional theory (TDDFT) calculations. Potential energy curves (PECs) and frontier molecular orbitals (FMOs) reveal that the introduction of the triphenylamine group on the benzene ring enhances intramolecular HB, thereby benefiting the ESIPT process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!