The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams. A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams. The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5 × 5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction. It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary to make it a clinically viable PGI system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/60/18/7085 | DOI Listing |
Phys Med
January 2025
Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Taramani, Chennai, Tamil Nadu, India. Electronic address:
Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.
Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.
J Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, Florida, USA.
Purpose: A novel proton beam delivery method known as DynamicARC spot scanning has been introduced. The current study aims to determine whether the partial proton arc technique, in conjunction with DynamicARC pencil beam scanning (PBS), can meet clinical acceptance criteria for bilateral head and neck cancer (HNC) and provide an alternative to full proton arc and traditional intensity-modulated proton therapy (IMPT).
Method: The study retrospectively included anonymized CT datasets from ten patients with bilateral HNC, all of whom had previously received photon treatment.
Phys Med Biol
December 2024
Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, ctra. Madrid-Cartagena, 30120 El Palmar (Murcia), Spain.
. For calculating shielding in x-ray rooms, it is often assumed that the beams impinge perpendicularly on the protective barriers. This is not always true, but this premise simplifies the calculations and enhances protection by being a conservative calculation.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2024
Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
Purpose: To commission the RayStation (RS) TPS (treatment planning system) for scanned CIRT (carbon-ion radiotherapy) utilizing pencil beam algorithms (PBv4.2).
Methods: The beam model commissioning entailed employing 1D single beams and 2D monoenergetic fields to validate spot profiles with films, assess beam range using Peakfinder measurements, and evaluate fragment spectra through dose-averaged linear energy transfer (LETd) calculations.
Phys Imaging Radiat Oncol
October 2024
Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom.
Background And Purpose: Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality.
Materials And Methods: Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!