Human papillomavirus capsids preferentially bind and infect tumor cells.

Int J Cancer

Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.

Published: February 2016

We previously determined that human papillomavirus (HPV) virus-like particles (VLPs) and pseudovirions (PsV) did not, respectively, bind to or infect intact epithelium of the cervicovaginal tract. However, they strongly bound heparan sulfate proteoglycans (HSPG) on the basement membrane of disrupted epithelium and infected the keratinocytes that subsequently entered the disrupted site. We here report that HPV capsids (VLP and PsV) have the same restricted tropism for a wide variety of disrupted epithelial and mesothelial tissues, whereas intact tissues remain resistant to binding. However, the HPV capsids directly bind and infect most tumor-derived cell lines in vitro and have analogous tumor-specific properties in vivo, after local or intravenous injection, using orthotopic models for human ovarian and lung cancer, respectively. The pseudovirions also specifically infected implanted primary human ovarian tumors. Heparin and ι-carrageenan blocked binding and infection of all tumor lines tested, implying that tumor cell binding is HSPG-dependent. A survey using a panel of modified heparins indicates that N-sulfation and, to a lesser degree, O-6 sulfation of the surface HSPG on the tumors are important for HPV binding. Therefore, it appears that tumor cells consistently evolve HSPG modification patterns that mimic the pattern normally found on the basement membrane but not on the apical surfaces of normal epithelial or mesothelial cells. Consequently, appropriately modified HPV VLPs and/or PsV could be useful reagents to detect and potentially treat a remarkably broad spectrum of cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715788PMC
http://dx.doi.org/10.1002/ijc.29823DOI Listing

Publication Analysis

Top Keywords

bind infect
12
human papillomavirus
8
tumor cells
8
basement membrane
8
hpv capsids
8
epithelial mesothelial
8
human ovarian
8
hpv
5
human
4
papillomavirus capsids
4

Similar Publications

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Increasing evidence suggests that individuals infected with Coronavirus disease 2019 (COVID-19) are at a higher risk of developing type 2 diabetes (T2D) compared to those who are not infected. However, the mechanisms underlying this relationship remain poorly understood. In this study, we aimed to systematically evaluate the mediating roles of 3,283 plasma proteins in the link between COVID-19 susceptibility and T2D by conducting proteome-wide Mendelian randomization (MR) analyses.

View Article and Find Full Text PDF

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has caused severe economic losses in the swine industry. Screening key host immune-related genetic factors in the porcine alveolar macrophages (PAMs) is critical to improve the anti-virial ability in pigs.

Methods: In this study, an model was set to evaluate the anti-PRRSV effect of tylvalosin tartrates.

View Article and Find Full Text PDF

The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!