Five genomic prediction models were applied to three wheat agronomic traits-grain yield, heading date and grain test weight-in three breeding populations, each comprising about 350 doubled haploid or recombinant inbred lines evaluated in three locations during a 3-year period. The prediction accuracy, measured as the correlation between genomic estimated breeding value and observed trait, was in the range of previously published values for yield ( = 0.2-0.5), a trait with relatively low heritability. Accuracies for heading date and test weight, with relatively high heritabilities, were about 0.70. There was no improvement of prediction accuracy when two or three breeding populations were merged into one for a larger training set (e.g., for yield ranged between 0.11 and 0.40 in the respective populations and between 0.18 and 0.35 in the merged populations). Cross-population prediction, when one population was used as the training population set and another population was used as the validation set, resulted in no prediction accuracy. This lack of cross-population prediction accuracy cannot be explained by a lower level of relatedness between populations, as measured by a shared SNP similarity, since it was only slightly lower between than within populations. Simulation studies confirm that cross-prediction accuracy decreases as the proportion of shared QTLs decreases, which can be expected from a higher level of QTL × environment interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544631PMC
http://dx.doi.org/10.1007/s11032-014-0143-yDOI Listing

Publication Analysis

Top Keywords

prediction accuracy
16
three breeding
8
breeding populations
8
cross-population prediction
8
prediction
6
populations
6
three
5
accuracy
5
genome-wide prediction
4
prediction three
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!