Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality judgments. It is also significant to construct a platform for evaluating the performance of the objective measures in order to analyze their pros and cons. In this paper, first, we present a novel subjective object segmentation visual quality database, in which a total of 255 segmentation results were evaluated by more than thirty human subjects. Then, we propose a novel full-reference objective measure for an object segmentation visual quality evaluation, which involves four human visual properties. Finally, our measure is compared with some state-of-the-art objective measures on our database. The experiment demonstrates that the proposed measure performs better in matching subjective judgments. Moreover, the database is available publicly for other researchers in the field to evaluate their measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2015.2473099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!