Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6.

Bioinformatics

Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France.

Published: December 2015

Motivation: Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery.

Results: We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed modeling using three learning algorithms--support vector machine, RandomForest and NaiveBayesian--and we constructed combined models based on topological information of known CYP2D6 inhibitors and predicted binding energies computed by docking on both X-ray and MD protein conformations. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descriptors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78% on the training set and 75% on the external validation set.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btv486DOI Listing

Publication Analysis

Top Keywords

cyp2d6 inhibition
12
silico approach
8
cytochrome p450
8
models based
8
predicted binding
8
binding energies
8
cyp2d6
7
inhibition
5
integrated structure-
4
structure- ligand-based
4

Similar Publications

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood.

View Article and Find Full Text PDF

An Evaluation of Iloperidone for Mania in Bipolar I Disorder.

Ann Pharmacother

January 2025

Division of Pharmacy Practice and Administration, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.

Objective: To review the efficacy of iloperidone for mania associated with bipolar I disorder and discuss its safety profile (eg, QTc prolongation, orthostatic hypotension, and metabolic adverse effects).

Data Sources: Literature was identified using PubMed (1966-September 2024), OVID (1984-November 2024), and clinicaltrials.gov.

View Article and Find Full Text PDF

: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design.

J Med Chem

January 2025

Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.

assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!