Unlabelled: The primary aim of this study was to assess the potential of in vivo photoacoustic tomography for direct functional measurement of ovarian tumor response to antiangiogenic therapy.

Methods: In vivo studies were performed with institutional animal care and use committee approval. We used an orthotopic mouse model of ovarian cancer treated with trebananib (n = 9) or vehicle (n = 9). Tumor-bearing mice were randomized into trebananib or vehicle groups at day 10 and dosed on days 12, 15, and 18 after implantation. Photoacoustic tomography and blood draws were performed at day 10 and then 24 h after each drug dose. Tumors were excised for histopathology after the final studies on day 19. Data analysis to test for statistical significance was performed blinded.

Results: Blockade of angiopoietin signaling using trebananib resulted in reduced total hemoglobin-weighted photoacoustic signal (n = 9, P = 0.01) and increased oxyhemoglobin-weighted photoacoustic signal (n = 9, P < 0.01). The latter observation indicated normalization of the residual tumor vessels, which was also implied by low levels of angiopoietin 1 in serum biomarker profiling (0.76 ± 0.12 ng/mL). These noninvasive measures reflected a 30% reduction in microvessel density and increased vessel maturation in ex vivo sections.

Conclusion: Photoacoustic tomography is able to evaluate both vessel regression and normalization in response to trebananib. Noninvasive imaging data were supported by modulation of serum markers in vitro and ex vivo histopathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612481PMC
http://dx.doi.org/10.2967/jnumed.115.160002DOI Listing

Publication Analysis

Top Keywords

photoacoustic tomography
16
vessel regression
8
regression normalization
8
ovarian tumor
8
tumor response
8
response antiangiogenic
8
trebananib vehicle
8
photoacoustic signal
8
signal 001
8
photoacoustic
6

Similar Publications

The delivery of light over an extended area within a sample forms the basis of biomedical applications that are as relevant as photoacoustic tomography, fluorescence imaging, and phototherapy techniques. However, light scattering limits the ability of these methods to reach deep regions within biological tissues. As a result, their operational range remains confined to superficial areas of samples, posing a significant barrier to effective optical treatment and diagnosis.

View Article and Find Full Text PDF

A mitochondrial targeted fluorescent probe for imaging nitroreductase activity and photodynamic therapy in tumor cells.

Talanta

December 2024

Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China. Electronic address:

The hypoxic environment in tumors is closely linked to tumor structure, function, dissemination, invasion, metastasis, and drug resistance. Nitroreductase (NTR) is often recognized as a biomarker to evaluate the hypoxia degree for tumor cells. Traditional detection methods such as PET, MRI and multispectral photoacoustic tomography have limitations.

View Article and Find Full Text PDF

Research progress in tracing technology for extracellular vesicles.

Extracell Vesicles Circ Nucl Acids

December 2023

School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China.

Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles (EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell communication. They actively engage in a myriad of physiological and pathological processes.

View Article and Find Full Text PDF

Organ-level instance segmentation enables continuous time-space-spectrum analysis of pre-clinical abdominal photoacoustic tomography images.

Med Image Anal

December 2024

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China. Electronic address:

Photoacoustic tomography (PAT), as a novel biomedical imaging technique, is able to capture temporal, spatial and spectral tomographic information from organisms. Organ-level multi-parametric analysis of continuous PAT images are of interest since it enables the quantification of organ specific morphological and functional parameters in small animals. Accurate organ delineation is imperative for organ-level image analysis, yet the low contrast and blurred organ boundaries in PAT images pose challenge for their precise segmentation.

View Article and Find Full Text PDF

Photoacoustic tomography, a novel non-invasive imaging modality, combines the principles of optical and acoustic imaging for use in biomedical applications. In scenarios where photoacoustic signal acquisition is insufficient due to sparse-view sampling, conventional direct reconstruction methods significantly degrade image resolution and generate numerous artifacts. To mitigate these constraints, a novel sinogram-domain priors guided extremely sparse-view reconstruction method for photoacoustic tomography boosted by enhanced diffusion model is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!