Reduced graphene oxide-supported TiO2 fiber bundles with mesostructures as anode materials for lithium-ion batteries.

Chemistry

Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (P.R. China).

Published: October 2015

Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low-cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet-supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2 -RGO materials are used for investigation of Li-ion insertion properties, which show a reversible capacity of 235 mA h g(-1) at 200 mA g(-1) and 150 mA h g(-1) at 1000 mA g(-1) after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high-rate performance, and strong cycling stability of the TiO2 -RGO composites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201502352DOI Listing

Publication Analysis

Top Keywords

tio2 fiber
12
fiber bundles
12
bundles mesostructures
8
rgo nanosheets
8
tio2 -rgo
8
tio2
5
reduced graphene
4
graphene oxide-supported
4
oxide-supported tio2
4
mesostructures
4

Similar Publications

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF

Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism.

J Colloid Interface Sci

January 2025

School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China. Electronic address:

The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO, CeO, AlO) were synthesized and evaluated for methane combustion.

View Article and Find Full Text PDF

An in situ monitoring reaction can better obtain the variations during the progression of the photocatalytic reaction. However, the complexity of the apparatus and the limited applicability of substances are the common challenges faced by most in situ monitoring methods. Here, we invented an in situ infrared optical fiber sensor to monitor the reactants and products during photocatalytic reaction.

View Article and Find Full Text PDF

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.

View Article and Find Full Text PDF

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!