Background: Chromosome 13q22.1 has previously been identified to be a susceptibility locus for pancreatic cancer in Chinese and European ancestry populations. This pleiotropy study aimed to identify novel variants in this region associated with susceptibility to different types of human cancer.
Method: To fine-map the 13q22.1 region, imputation analyses were conducted on the basis of the GWAS data of 2,031 esophageal squamous cell cancer (ESCC) cases and 2,044 controls and 5,930 SNPs (625 directly genotyped and 5,305 well imputed). Promising associations were then examined in ESCC (4,146 cases and 4,135 controls), gastric cardia cancer (1,894 cases and 1,912 controls), noncardia gastric cancer (1,007 cases and 2,243 controls), and colorectal cancer (1,111 cases and 1,138 controls). Fine mapping and biochemical analyses were further performed to elucidate the potential function of novel variants.
Results: Two novel variants, rs1924966 and rs115797771, were associated with ESCC risk (P = 1.37 × 10(-10) and P = 2.32 × 10(-10), respectively) and were also associated with risk of gastric cardia cancer (P = 0.0003 and P = 0.0018, respectively) but not gastric cancer and colorectal cancer. Fine-mapping revealed another SNP, rs58090485, in strong linkage disequilibrium with rs115797771 (r(2) = 0.94). Functional analysis showed that this SNP disturbs a transcriptional repressor binding to the promoter region of KLF5, which might result in high constitutional expression of KLF5.
Conclusions: These results demonstrate that variants mapped on 13q22.1 are associated with the risk of different types of cancer.
Impact: 13q22.1 might serve as a biomarker for the identification of individuals at risk for ESCC and gastric cardia cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1055-9965.EPI-15-0154-T | DOI Listing |
Transl Pediatr
December 2024
Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
Background: Alagille syndrome (ALGS) is a rare disease. The variable clinical manifestations make the diagnosis of ALGS difficult. This study aimed to provide a basis for the early diagnosis of ALGS patients whose clinical identification is difficult and to enrich the spectrum of genetic variants implicated in Chinese children with ALGS.
View Article and Find Full Text PDFTransl Pediatr
December 2024
Department of Pediatric Intensive Care Unit, National Regional Medical Center, Guizhou Branch of Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Guizhou Provincial People's Hospital, Guiyang, China.
Background: Metabolic cardiomyopathy is characterized by structural and functional changes to the heart and interstitial fibrosis without coronary artery disease or hypertension. Inborn metabolic defects are a common cause of cardiomyopathy in children. There are more than 40 kinds of inborn metabolic defects that cause cardiomyopathy.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.
Hypoparathyroidism (hypoPTH), sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant condition with approximately 200 cases published. HDR syndrome is caused by variants of GATA binding protein 3 gene (), which encodes a transcription factor, with multiple types of variants reported. We present the case of a 76-year-old woman who was diagnosed with hypoPTH when she was aged 40 years and transferred care to our institution.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
January 2025
Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences Indiana University School of Medicine Indianapolis Indiana USA.
Introduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.
View Article and Find Full Text PDFCureus
December 2024
Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK.
X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!