A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The involvement of aquaporin 1 in the hepatopulmonary syndrome rat serum-induced migration of pulmonary arterial smooth muscle cells via the p38-MAPK pathway. | LitMetric

Hepatopulmonary syndrome (HPS) is characterized by arterial oxygenation defects induced by intrapulmonary vascular dilation (IPVD). Pulmonary vascular remodeling (PVR) is an important pathological feature of IPVD; however, the details regarding the underlying mechanisms of this process remain undefined. Recent studies have determined that the abnormal migration of pulmonary arterial smooth muscle cells (PASMCs) plays a role in the pathogenesis of the PVR associated with HPS. Additionally, aquaporin 1 (AQP1) not only functions as a water channel molecule but also promotes cell migration by facilitating water transport in the lamellipodia of migrating cells. Common bile duct ligation (CBDL) rat is a well-accepted HPS model; we determined that the immunoperoxidase labeling of AQP1 was enhanced in the media of the pulmonary vessels in CBDL rats. HPS rat serum mediated the overexpression of AQP1 in PASMCs, and also upregulated PASMC migration. Small interfering RNAs (siRNAs) that targeted rat AQP1 caused significant downregulation of AQP1, which resulted in decreased PASMC migration. Furthermore, the inhibition of the p38-MAPK pathway abolished AQP1-dependent PASMC migration. In conclusion, this study demonstrated that AQP1 enhanced PASMC migration via the p38-MAPK pathway in rat with HPS and may represent a potential therapeutic strategy in the setting of pulmonary vascular remodeling associated with HPS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5mb00347dDOI Listing

Publication Analysis

Top Keywords

pasmc migration
16
p38-mapk pathway
12
hepatopulmonary syndrome
8
migration pulmonary
8
pulmonary arterial
8
arterial smooth
8
smooth muscle
8
muscle cells
8
pulmonary vascular
8
vascular remodeling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!