An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695004 | PMC |
http://dx.doi.org/10.18632/oncotarget.4748 | DOI Listing |
Exp Cell Res
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan province, China; Department of Gastroenterology, Ningyuan County People's Hospital, Yongzhou City, 425600, Hunan province, China. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease characterized by hepatocyte steatosis, which excludes alcohol, drugs and other definite liver damage-related factors. It has been reported that OTUB1 serves a significant role in the regulation of glucose and lipid metabolism. The present study aimed to investigate the molecular mechanism underlying the effect of OTUB1 on regulating NAFLD.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.
View Article and Find Full Text PDFJ Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Département de Biologie, Faculté des Sciences, Université Chouaïb Doukkali, El Jadida, Morocco.
Background: The Ets-1 transcription factor plays a primordial role in regulating the expression of numerous genes implicated in cancer progression. In a previous study, we revealed that poly(ADP-ribose) polymerase-1 (PARP-1) inhibition by PJ-34 results in Ets-1 level increase in cells, which is related with cell death of Ets-1-expressing cancer cells.
Aims: The mechanism of the antitumor effect of PARP-1 inhibition was investigated in the Ets-1-expressing MDA-MB-231 breast cancer cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!