A majority of the photo-responsive drug-delivery systems that are currently being studied require a complicated synthesis method. Here, we prepare a near-infrared responsive, photothermally controllable, drug-delivery carrier by a simple mixing and extraction process without the incorporation of toxic chemicals. A blend of doxorubicin (DOX), an anticancer drug, and a phase-change material (PCM) are loaded onto the mesoporous structure of silica-coated graphene oxide (GO@MS) to form a waffle-like structure, which is confirmed by various physicochemical analyses. The cytotoxicity of DOX/PCM-loaded GO@MS (DOX/PCM-GO@MS) against HeLa cells is 50 times higher than that of free DOX, and this improved activity can be attributed to the photothermal effectiveness of GO@MS. Additionally, the cytotoxicity and uptake mechanism of the PCM-based material are analyzed by flow cytometry. Taken together, our results suggest an enormous potential for spatio-temporal control in photothermally responsive drug-delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201403228 | DOI Listing |
Expert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Front Pharmacol
December 2024
Syreon Research Institute, Budapest, Hungary.
Background: Non-adherence to medication remains a persistent and significant challenge, with profound implications for patient outcomes and the long-term sustainability of healthcare systems. Two decades ago, the World Health Organization (WHO) dedicated its seminal report to adherence to long-term therapies, catalysing notable changes that advanced both research and practice in medication adherence. The aim of this paper was to identify the most important progress made over the last 2 decades in medication adherence management and to initiate a discussion on future objectives, suggesting priority targets for the next 20 years.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.
Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.
View Article and Find Full Text PDFLiposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFEClinicalMedicine
November 2024
Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Biotherapeutics are among the therapeutics that have revolutionized standard inflammatory bowel disease (IBD) treatment, which was previously limited to mesalamine, 5-aminosalicylic acid, corticosteroids, and classical immunosuppressants. Self-administrable biotherapeutics for IBD would enable home-based treatment and reduce the burden on medical infrastructure. Self-administration is made possible through subcutaneous injectable, oral, and rectal dosage forms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!