The ubiquitin-proteasome system plays an essential regulatory role in various cellular processes. Besides its involvement in normal cellular functions, the alteration of proteasomal activity contributes to the pathological states of several clinical disorders, including cancer. Aberrant methylation of the CpG islands has been reported as an alternative way to inactivate gene expression involved in the ubiquitination process and thus protein degradation in tumor tissues. In this study, we aimed to determine the CpG methylation pattern of the UCHL1 promoter, as well as the mutation spectrum and the expression pattern of P53 in sporadic colorectal cancer (CRC) from Tunisian patients. We found that UCHL1 was methylated in 68.57 % and correlated significantly with lymph node metastasis (P = 0.029) and transcriptional silencing in tumor tissues (P = 0.013). Mutation screening of exons 5-9 of P53 showed that 42.85 % of cases harbor somatic mutation and are positively correlated with the methylated pattern of UCHL1 (P = 0.001). Furthermore, cytoplasmic accumulation of P53 was strongly associated with the unmethylated UCHL1 profile (P = 0.006), supporting the relationship between these two proteins in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13277-015-3902-4 | DOI Listing |
Carcinogenesis
January 2025
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
Endometrial cancer [EC] is the fourth most common cancer in women in the United States. Stark racial disparities are present in EC outcomes in which Black women have significantly higher EC-related mortality than White women. The social and biologic factors that contribute to these disparities are complex, and may include racial differences in epigenetic landscapes.
View Article and Find Full Text PDFBMC Genomics
January 2025
Centre for Environmental Health, Hasselt University, Hasselt, Belgium.
Background: Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length.
View Article and Find Full Text PDFClin Immunol
January 2025
Department of Rheumatology, Qilu Hospital of Shandong University(Qingdao), Qingdao, China. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease linked to epigenetic changes, particularly DNA methylation. While LDLRAD4 has been implicated in RA through GWAS, its role in RA via methylation remains unclear.
Objectives: To investigate LDLRAD4 methylation patterns in RA and evaluate its potential as a diagnostic and inflammatory biomarker.
Nucleic Acids Res
January 2025
Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Genome graphs, including the recently released draft human pangenome graph, can represent the breadth of genetic diversity and thus transcend the limits of traditional linear reference genomes. However, there are no genome-graph-compatible tools for analyzing whole genome bisulfite sequencing (WGBS) data. To close this gap, we introduce methylGrapher, a tool tailored for accurate DNA methylation analysis by mapping WGBS data to a genome graph.
View Article and Find Full Text PDFBioinform Adv
January 2025
Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, D-69120 Heidelberg, Germany.
Motivation: Since their introduction about 10 years ago, methylation clocks have provided broad insights into the biological age of different species, tissues, and in the context of several diseases or aging. However, their application to single-cell methylation data remains a major challenge, because of the inherent sparsity of such data, as many CpG sites are not covered. A methylation clock applicable on single-cell level could help to further disentangle the processes that drive the ticking of epigenetic clocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!