A trade-off between resource investment into growth rate and body self-maintenance is likely to occur, but the underlying molecular mediators of such a trade-off remain to be determined. In many altricial birds, hatching asynchrony creates a sibling competitive hierarchy within the brood, with first-hatched nestlings enjoying substantial advantages compared to last-hatched nestlings. We used this opportunity to test for a trade-off between growth and self-maintenance processes (oxidative stress, telomere erosion) in great tit nestlings, since resource availability and allocation are likely to differ between first-hatched and last-hatched nestlings. We found that despite their starting competitive handicap (i.e. being smaller/lighter before day 16), last-hatched nestlings exhibited growth rate and mass/size at fledging similar to first-hatched ones. However, last-hatched nestlings suffered more in terms of oxidative stress, and ended growth with shorter telomeres than first-hatched ones. Interestingly, growth rate was positively related to plasma antioxidant capacity and early life telomere length (i.e. at 7 days old), but among last-hatched nestlings, those exhibiting the faster body size growth were also those exhibiting the greatest telomere erosion. Last-hatched nestlings exhibited elevated levels of plasma testosterone (T), but only at day 7. T levels were positively associated with oxidative damage levels and plasma antioxidant capacity, the latter being only significant for first-hatched nestlings. Our results suggest that last-hatched nestlings present a specific trade-off between growth rate and self-maintenance processes, which is possibly driven by their need to compete with their older siblings and potentially mediated by elevated levels of T.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-015-3429-9 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
December 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
Many songbirds begin active incubation after laying their penultimate egg, resulting in synchronous hatching of the clutch except for a last-hatched individual ("runt") that hatches with a size deficit and competitive disadvantage to siblings when begging for food. However, climate change may elevate temperatures and cause environmental incubation as eggs are laid, resulting in asynchronous hatching and larger size hierarchies among siblings. Although previous work demonstrated that asynchronous hatching reduces nestling growth and survival relative to synchrony, the physiological mechanisms underlying these effects are unclear.
View Article and Find Full Text PDFJ Exp Biol
August 2022
Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland.
Food shortage challenges the development of nestlings; yet, to cope with this stressor, nestlings can induce stress responses to adjust metabolism or behaviour. Food shortage also enhances the antagonism between siblings, but it remains unclear whether the stress response induced by food shortage operates via the individual nutritional state or via the social environment experienced. In addition, the understanding of these processes is hindered by the fact that effects of food availability often co-vary with other environmental factors.
View Article and Find Full Text PDFZool Res
March 2022
Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna A-1160, Austria.
Sibling cannibalism is relatively common in nature, but its evolution in birds and certain other vertebrates with extended parental care had been discarded. Here, however, we demonstrate its regular occurrence in two European populations of the Eurasian hoopoe () and explore possible adaptive and non-adaptive explanations. Results showed that sibling cannibalism was more frequently detected in Spain (51.
View Article and Find Full Text PDFGen Comp Endocrinol
April 2022
Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA.
Variation in nestling growth and survival is often influenced by hatching order, with first-hatched offspring having an advantage over later-hatched younger siblings. In house wrens (Troglodytes aedon), this effect of hatching order is especially evident in asynchronously hatched broods and can lead to sex-specific differences in the size and condition of nestlings. Females appear to allocate the sex of their offspring across the laying order to capitalize on these differences.
View Article and Find Full Text PDFOecologia
January 2022
Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.
The joint effects of interacting environmental factors on key demographic parameters can exacerbate or mitigate the separate factors' effects on population dynamics. Given ongoing changes in climate and land use, assessing interactions between weather and food availability on reproductive performance is crucial to understand and forecast population dynamics. By conducting a feeding experiment in 4 years with different weather conditions, we were able to disentangle the effects of weather, food availability and their interactions on reproductive parameters in an expanding population of the red kite (Milvus milvus), a conservation-relevant raptor known to be supported by anthropogenic feeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!