A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels? | LitMetric

Do Cost Functions for Tracking Error Generalize across Tasks with Different Noise Levels?

PLoS One

Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada; Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada.

Published: May 2016

Control of human-machine interfaces are well modeled by computational control models, which take into account the behavioral decisions people make in estimating task dynamics and state for a given control law. This control law is optimized according to a cost function, which for the sake of mathematical tractability is typically represented as a series of quadratic terms. Recent studies have found that people actually use cost functions for reaching tasks that are slightly different than a quadratic function, but it is unclear which of several cost functions best explain human behavior and if these cost functions generalize across tasks of similar nature but different scale. In this study, we used an inverse-decision-theory technique to reconstruct the cost function from empirical data collected on 24 able-bodied subjects controlling a myoelectric interface. Compared with previous studies, this experimental paradigm involved a different control source (myoelectric control, which has inherently large multiplicative noise), a different control interface (control signal was mapped to cursor velocity), and a different task (the tracking position dynamically moved on the screen throughout each trial). Several cost functions, including a linear-quadratic; an inverted Gaussian, and a power function, accurately described the behavior of subjects throughout this experiment better than a quadratic cost function or other explored candidate cost functions (p<0.05). Importantly, despite the differences in the experimental paradigm and a substantially larger scale of error, we found only one candidate cost function whose parameter was consistent with the previous studies: a power function (cost ∝ errorα) with a parameter value of α = 1.69 (1.53-1.78 interquartile range). This result suggests that a power-function is a representative function of user's error cost over a range of noise amplitudes for pointing and tracking tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552421PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136251PLOS

Publication Analysis

Top Keywords

cost functions
24
cost function
12
cost
9
generalize tasks
8
control
8
control law
8
function
5
functions
5
functions tracking
4
tracking error
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!