Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein we present a general protocol for the functionalization of biomolecules with an organotrifluoroborate moiety so that they can be radiolabeled with aqueous (18)F fluoride ((18)F(-)) and used for positron emission tomography (PET) imaging. Among the β(+)-emitting radionuclides, fluorine-18 ((18)F) is the isotope of choice for PET, and it is produced, on-demand, in many hospitals worldwide. Organotrifluoroborates can be (18)F-labeled in one step in aqueous conditions via (18)F-(19)F isotope exchange. This protocol features a recently designed ammoniomethyltrifluoroborate, and it describes the following: (i) a synthetic strategy that affords modular synthesis of radiolabeling precursors via a copper-catalyzed 'click' reaction; and (ii) a one-step (18)F-labeling method that obviates the need for HPLC purification. Within 30 min, (18)F-labeled PET imaging probes, such as peptides, can be synthesized in good chemical and radiochemical purity (>98%), satisfactory radiochemical yield of 20-35% (n > 20, non-decay corrected) and high specific activity of 40-111 GBq/μmol (1.1-3.0 Ci/μmol). The entire procedure, including the precursor preparation and (18)F radiolabeling, takes 7-10 d.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223096 | PMC |
http://dx.doi.org/10.1038/nprot.2015.090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!