Background: Coagulation factor XIII-A has a crucial role in thrombus stabilisation and tissue repair. Factor XIII-A deficiency causes a severe bleeding phenotype and impaired wound healing, but the cellular origin of Factor XIII-A is unknown. To identify the cells that maintain the plasma pool, we generated a mouse floxed in coding exon7 of the factor XIII-A gene (F13A1). These mice were crossed with mice transgenic for Pf4-Cre-recombinase (thrombopoietic deletion) or Cd11b-Cre-recombinase (myeloid deletion). The resultant mice were compared with a Mpl-/- (thrombopoietin receptor knockout) thrombocytopenic murine model.
Methods: Factor XIII-A recombination was evaluated by quantitative PCR assay of genomic DNA from liver and spleen. Factor XIII-A enzyme activity was measured in plasma and platelets with a biotin incorporation assay. quantitative PCR was performed to determine factor XIII-A mRNA levels in aortic and cardiac tissue. Factor XIII-A transcripts were assayed in human umbilical blood haemopoietic cell lineages.
Findings: Selectivity of Pf4-Cre and Cd11b-Cre mediated deletion was confirmed in liver and spleen. A 40% decrease in factor XIII-A plasma activity was observed in Cd11b mice, whereas plasma activity was decreased by 85% and absent in platelets from Pf4 mice. By contrast, plasma factor XIII-A was normal in Mpl mice. Cd11b mice showed no reduction in factor XIII-A mRNA in cardiac tissue and a 54·6% reduction in aorta. A major decrease in factor XIII-A mRNA was observed in the aorta (91·6%) and heart (99·2%) of Pf4 mice, but there was no change in expression in either tissue from Mpl mice. In a human stem-cell study, factor XIII-A mRNA transcription increased as common myeloid progenitors committed to become granulocyte-macrophage progenitors and as megakaryocyte-erythroid progenitors differentiated to both megakaryocytes and erythroblasts.
Interpretation: These results raise the possibility that a unique Pf4-dependent, Mpl-independent progenitor cell is the major source of the plasma pool. These findings might have implications for the management of factor XIII-A deficiency states.
Funding: British Heart Foundation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(15)60354-3 | DOI Listing |
Background: Germline haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes.
View Article and Find Full Text PDFThromb Haemost
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Background: Neutrophil Extracellular Traps can contribute to thrombosis via stabilization fibrin network, which is normally conducted by plasma transglutaminase, Factor XIII-A as part of coagulation cascade. The possible presence and activity of FXIII-A in neutrophils or during NETosis is unknown. Here, we investigated potential presence of FXIII-A in neutrophils and participation in NET-fibrinogen interaction.
View Article and Find Full Text PDFSemin Thromb Hemost
November 2024
Department of Hematology, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
Biochem Genet
November 2024
Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
COVID-19 is viral illness caused by SARS-CoV-2. The immediate complications of COVID-19 are well defined and associated with increased mortality. A global effort is required to determine its effects on implantation, fetal growth and labor.
View Article and Find Full Text PDFBlood Adv
October 2024
Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!