Background: MicroRNAs (miRNAs) are small non-coding RNA molecules. Reduced or increased levels of specific miRNAs are observed in colon and other cancers, supporting their role in carcinogenesis. Detection of colorectal polyps is the cornerstone of the Bowel Cancer Screening Programme in the UK. However, uptake of screening nationally remains under 60%. We aimed to see whether circulating plasma miRNAs can be used to screen for patients with colorectal polyps, adenomas, or both.
Methods: Blood samples were taken from patients from the Bowel Cancer Screening Programme (asymptomatic but faecal occult blood testing [FOBt] positive). Plasma RNA was extracted, target miRNAs (19a, 98, 146b, 186, 191, 222*, 331-5p, 452, 625, 664, 1247) were identified on pooled case miRNA assay cards, and miRNA fraction was quantified by quantitative RT-PCR assay. Results were compared with endoscopy reports and with histology of any polyps identified and removed. Analysis was done with Excel (2011) and SPSS (version 20) software.
Findings: 210 patients were included (117 with polyps, 12 with cancer, 81 healthy controls [FOBt positive]). The miRNA panel showed significant differences in expression (on t testing) for patients compared with controls for those with polyps, cancer, or both (miR-19a, p=0·0184; miR-98, p=0·0206; miR-146b, p=0·0029; miR-186, p=0·0006; miR-62,5 p=0·0008), polyps (miR-19a, p=0·0233; miR-98, p=0·0224; miR-146b, p=0·003; miR-186, p=0·0004; miR-625, p=0·001), adenomas (miR-19a, p=0·0339; miR-98, p=0·0266; miR-146b, p=0·0045; miR-186, p=0·0008; miR-625, p=0·0049), multiple adenomas (both sides of colon; miR-146b, p=0·0194; miR-186, p=0·0226; miR-625, p=0·0013), and right-sided adenomas (miR-98, p=0·031; miR-146b, p=0·0076; miR-186, p=0·0041; miR-331-5p, p=0·0142; miR-625, p=0·0049). Receiver operating characteristic analysis showed sensitivity of 60% or more, and specificity of 86% or more for men with polyps, men with adenomas, all patients with haemorrhoids or diverticulosis and polyps, and all patients with haemorrhoids or diverticulosis and adenomas.
Interpretation: The target miRNAs that we identified showed significant differences in expression levels for patients with polyps and patients with adenomas from controls. Use of this panel has potential as a screening test.
Funding: Bowel Disease Research Foundation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(15)60415-9 | DOI Listing |
Sci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China.
To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.
View Article and Find Full Text PDFMod Pathol
January 2025
Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:
Oxyntic gland neoplasms typically arise in Helicobacter pylori-naïve stomachs and are composed predominantly of chief cells, with a smaller component of parietal cells. The pathologic diagnosis can be challenging due to minimal cellular atypia. Especially in biopsy specimens with limited tumor volume or when pathologists have limited experience in diagnosing this neoplasm, distinguishing it from normal oxyntic glands can be difficult, and no reliable diagnostic markers are currently available.
View Article and Find Full Text PDFJ Surg Res
January 2025
Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio. Electronic address:
Introduction: In the United States, while most nonmalignant polyps are effectively treated through endoscopic removal, colectomy remains a treatment option for selected cases of nonmalignant polyps (NMPs) and colon cancer. This study aimed to compare postoperative outcomes for colectomies in these two conditions, hypothesizing similar complication rates.
Methods: We conducted a retrospective review of the American College of Surgeons National Surgical Quality Improvement Program database from 2015 to 2021, including patients who underwent elective colectomies for colon cancer or NMPs.
Biosens Bioelectron
January 2025
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:
Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!