We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt-FeCo/GC@MSS). The Pt-FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m(2) g(-1), pore volume of 0.165 cm(3) g(-1), and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt-FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt-FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt-FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201500773 | DOI Listing |
ChemistryOpen
January 2025
Department of Chemistry, University of Botswana, Botswana Private bag UB, Gaborone, 00704, Botswana.
This study explores the synthesis of ZSM-5 zeolite using high-purity mesoporous silica exclusively derived from coal fly ash (CFA), eliminating the need for additional silica or alumina sources. Traditional ZSM-5 synthesis relies on costly and environmentally harmful pure chemicals, whereas this approach utilizes CFA, an industrial byproduct, addressing both cost and sustainability concerns. The synthesized ZSM-5 zeolite demonstrates exceptional purity, with a surface area of 455.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.
The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.
View Article and Find Full Text PDFNanoscale
January 2025
National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!